The MGC Project Team 1Since its start, the Mammalian Gene Collection (MGC) has sought to provide at least one full-protein-coding sequence cDNA clone for every human and mouse gene with a RefSeq transcript, and at least 6200 rat genes. The MGC cloning effort initially relied on random expressed sequence tag screening of cDNA libraries. Here, we summarize our recent progress using directed RT-PCR cloning and DNA synthesis. The MGC now contains clones with the entire protein-coding sequence for 92% of human and 89% of mouse genes with curated RefSeq (NM-accession) transcripts, and for 97% of human and 96% of mouse genes with curated RefSeq transcripts that have one or more PubMed publications, in addition to clones for more than 6300 rat genes. These high-quality MGC clones and their sequences are accessible without restriction to researchers worldwide.
GenBank® (https://www.ncbi.nlm.nih.gov/genbank/) is a comprehensive, public database that contains 19.6 trillion base pairs from over 2.9 billion nucleotide sequences for 504 000 formally described species. Daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. Recent updates include resources for data from the SARS-CoV-2 virus, NCBI Datasets, BLAST ClusteredNR, the Submission Portal, table2asn, a Foreign Contamination Screening tool and BioSample.
Background: GenBank contains over 3 million viral sequences. The National Center for Biotechnology Information (NCBI) previously made available a tool for validating and annotating influenza virus sequences that is used to check submissions to GenBank. Before this project, there was no analogous tool in use for non-influenza viral sequence submissions. Results: We developed a system called VADR (Viral Annotation DefineR) that validates and annotates viral sequences in GenBank submissions. The annotation system is based on analysis of the input nucleotide sequence using models built from curated RefSeqs. Hidden Markov models are used to classify sequences by determining the RefSeq they are most similar to, and feature annotation from the RefSeq is mapped based on a nucleotide alignment of the full sequence to a covariance model. Predicted proteins encoded by the sequence are validated with nucleotide-to-protein alignments using BLAST. The system identifies 43 types of "alerts" that (unlike the previous BLAST-based system) provide deterministic and rigorous feedback to researchers who submit sequences with unexpected characteristics. VADR has been integrated into GenBank's submission processing pipeline allowing for viral submissions passing all tests to be accepted and annotated automatically, without the need for any human (GenBank indexer) intervention. Unlike the previous submission-checking system, VADR is freely available (https://github.com/nawrockie/vadr) for local installation and use. VADR has been used for Norovirus submissions since May 2018 and for Dengue virus submissions since January 2019. Other viruses with high numbers of submissions will be added incrementally. Conclusion: VADR improves the speed with which non-flu virus submissions to GenBank can be checked and improves the content and quality of the GenBank annotations. The availability and portability of the software allows researchers to run the GenBank checks prior to submitting their viral sequences, and thereby gain confidence that their submissions will be accepted immediately without the need to correspond with GenBank staff. Reciprocally, the adoption of VADR frees GenBank staff to spend more time on services other than checking routine viral sequence submissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.