Chikungunya virus (CHIKV) is an arthritogenic alphavirus causing epidemics of acute and chronic arthritic disease. Herein we describe a comprehensive RNA-Seq analysis of feet and lymph nodes at peak viraemia (day 2 post infection), acute arthritis (day 7) and chronic disease (day 30) in the CHIKV adult wild-type mouse model. Genes previously shown to be up-regulated in CHIKV patients were also up-regulated in the mouse model. CHIKV sequence information was also obtained with up to ≈8% of the reads mapping to the viral genome; however, no adaptive viral genome changes were apparent. Although day 2, 7 and 30 represent distinct stages of infection and disease, there was a pronounced overlap in up-regulated host genes and pathways. Type I interferon response genes (IRGs) represented up to ≈50% of up-regulated genes, even after loss of type I interferon induction on days 7 and 30. Bioinformatic analyses suggested a number of interferon response factors were primarily responsible for maintaining type I IRG induction. A group of genes prominent in the RNA-Seq analysis and hitherto unexplored in viral arthropathies were granzymes A, B and K. Granzyme A-/- and to a lesser extent granzyme K-/-, but not granzyme B-/-, mice showed a pronounced reduction in foot swelling and arthritis, with analysis of granzyme A-/- mice showing no reductions in viral loads but reduced NK and T cell infiltrates post CHIKV infection. Treatment with Serpinb6b, a granzyme A inhibitor, also reduced arthritic inflammation in wild-type mice. In non-human primates circulating granzyme A levels were elevated after CHIKV infection, with the increase correlating with viral load. Elevated granzyme A levels were also seen in a small cohort of human CHIKV patients. Taken together these results suggest granzyme A is an important driver of arthritic inflammation and a potential target for therapy.Trial Registration: ClinicalTrials.gov NCT00281294
The diversity of peptides displayed by class I human leukocyte antigen (HLA) plays an essential role in T cell immunity. The peptide repertoire is extended by various posttranslational modifications, including proteasomal splicing of peptide fragments from distinct regions of an antigen to form nongenomically templated cis-spliced sequences. Previously, it has been suggested that a fraction of the immunopeptidome constitutes such cis-spliced peptides; however, because of computational limitations, it has not been possible to assess whether trans-spliced peptides (i.e., the fusion of peptide segments from distinct antigens) are also bound and presented by HLA molecules, and if so, in what proportion. Here, we have developed and applied a bioinformatic workflow and demonstrated that trans-spliced peptides are presented by HLA-I, and their abundance challenges current models of proteasomal splicing that predict cis-splicing as the most probable outcome. These trans-spliced peptides display canonical HLA-binding sequence features and are as frequently identified as cis-spliced peptides found bound to a number of different HLA-A and HLA-B allotypes. Structural analysis reveals that the junction between spliced peptides is highly solvent exposed and likely to participate in T cell receptor interactions. These results highlight the unanticipated diversity of the immunopeptidome and have important implications for autoimmunity, vaccine design, and immunotherapy.
The availability of large amounts of high-throughput genomic, transcriptomic and epigenomic data has provided opportunity to understand regulation of the cellular transcriptome with an unprecedented level of detail. As a result, research has advanced from identifying gene expression patterns associated with particular conditions to elucidating signalling pathways that regulate expression. There are over 1,000 transcription factors (TFs) in vertebrates that play a role in this regulation. Determining which of these are likely to be controlling a set of genes can be assisted by computational prediction, utilising experimentally verified binding site motifs. Here we present CiiiDER, an integrated computational toolkit for transcription factor binding analysis, written in the Java programming language, to make it independent of computer operating system. It is operated through an intuitive graphical user interface with interactive, high-quality visual outputs, making it accessible to all researchers. CiiiDER predicts transcription factor binding sites (TFBSs) across regulatory regions of interest, such as promoters and enhancers derived from any species. It can perform an enrichment analysis to identify TFs that are significantly over- or under-represented in comparison to a bespoke background set and thereby elucidate pathways regulating sets of genes of pathophysiological importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.