Biodiesel is synthesized through a transesterification reaction with the help of a catalyst and generally uses a homogeneous catalyst. Heterogeneous catalysts can be synthesized from waste biomass such as avocado peel through a calcination. The purpose of this study was to examine the effect of variations in calcination temperature (550, 650, and 750oC) on the performance of the catalyst for biodiesel production and to analyze the effect of differences in the amount of catalyst (4, 6, 8, and 10% by weight of oil) used in the transesterification process on biodiesel yield. The catalysts were characterized by XRD, SEM-EDX, and FTIR. The results of the characterization of the catalyst showed that the dominant active phase of the catalyst was potassium (K). The highest biodiesel yield was obtained when using avocado peel ash as a catalyst which was calcined at a temperature of 650oC and using 6% catalyst by weight of oil. In the transesterification reaction the composition of the biodiesel product was analyzed using GC-MS and resulted that the palmitic acid was the most abundant composition in biodiesel. The biodiesel products produced were characterized for its density, viscosity, and acid number and have met the standard of SNI 7182:2015.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.