The tuatara (Sphenodon punctatus)-the only living member of the reptilian order Rhynchocephalia (Sphenodontia), once widespread across Gondwana 1,2-is an iconic species that is endemic to New Zealand 2,3. A key link to the now-extinct stem reptiles (from which dinosaurs, modern reptiles, birds and mammals evolved), the tuatara provides key insights into the ancestral amniotes 2,4. Here we analyse the genome of the tuatara, which-at approximately 5 Gb-is among the largest of the vertebrate genomes yet assembled. Our analyses of this genome, along with comparisons with other vertebrate genomes, reinforce the uniqueness of the tuatara. Phylogenetic analyses indicate that the tuatara lineage diverged from that of snakes and lizards around 250 million years ago. This lineage also shows moderate rates of molecular evolution, with instances of punctuated evolution. Our genome sequence analysis identifies expansions of proteins, non-protein-coding RNA families and repeat elements, the latter of which show an amalgam of reptilian and mammalian features. The sequencing of the tuatara genome provides a valuable resource for deep comparative analyses of tetrapods, as well as for tuatara biology and conservation. Our study also provides important insights into both the technical challenges and the cultural obligations that are associated with genome sequencing.
A simple passive sampling protocol using cheesecloth and electronegative filters coupled with a Tween®20-based elution technique provided reliable detection of SARS-CoV-2 in wastewater at targeted locations in a region of low COVID-19 prevalence.
This study examined sulfate deposition in Nova Scotia from 1999 to 2015, and its association with increased pH and organic matter in two protected surface water supplies (Pockwock Lake and Lake Major) located in Halifax, Nova Scotia. The study also examined the effect of lake water chemistry on drinking water treatment processes. Sulfate deposition in the region decreased by 68%, whereas pH increased by 0.1-0.4 units over the 16-year period. Average monthly color concentrations in Pockwock Lake and Lake Major increased by 1.7 and 3.8×, respectively. Accordingly, the coagulant demand increased by 1.5 and 3.8× for the water treatment plants supplied by Pockwock Lake and Lake Major. Not only was this coagulant increase costly for the utility, it also resulted in compromised filter performance, particularly for the direct-biofiltration plant supplied by Pockwock Lake that was found to already be operating at the upper limit of the recommended direct filtration thresholds for color, total organic carbon and coagulant dose. Additionally, in 2012-2013 geosmin occurred in Pockwock Lake, which could have been attributed to reduced sulfate deposition as increases in pH favor more diverse cyanobacteria populations. Overall, this study demonstrated the impact that ambient air quality can have on drinking water supplies.
A review of available literature and current governance approaches related to the potential impacts of hydraulic fracturing on water quality (including drinking water) was developed. The paper identifies gaps in literature and (or) current governance approaches that should be addressed to guide decision-makers in the development of appropriate regulatory regimes that will enable assessment of the impacts of hydraulic fracturing on water quality. The lack of credible and comprehensive data are shown to have been a major setback to properly investigate and monitor hydraulic fracturing activities and their potential risks on the environment and water quality. A review of current governance approaches demonstrates that some jurisdictions have implemented baseline and post-operation water quality monitoring requirements; however, there are large variations in site-specific monitoring requirements across Canada and the United States. In light of recent information, a targeted approach is suggested based on risk priorities, which can prioritize sample collection and frequency, target contaminants, and the needed duration of the sampling. The steps outlined in this review help to interface with the public concerns associated with water quality, and appropriately ensure that public health is protected through appropriate water safety planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.