Background Ferritins are ubiquitous multi-subunit iron storage and detoxification proteins that play a critical role in iron homeostasis. Ferrous ions that enter the protein's shell through hydrophilic channels are rapidly oxidized at dinuclear centers on the H-subunit before transfer to the protein's cavity for storage. The mechanisms of iron loading have been extensively studied but little is known about iron mobilization. Fe(III) reduction can occur via rapid reduction by suitable reducing agents followed by chelation of Fe(II) ions or via direct and slow Fe(III) chelation. Here, the iron release kinetics from ferritin by FMNH2 in the presence of various chaotropic agents are studied and their in-vivo physiological significance discussed. Methods The iron release kinetics from horse and human ferritins by FMNH2 were monitored at 522 nm where the Fe(II)–bipyridine complex absorbs. The experiments were performed in the presence of different concentrations of three chaotropic agents, urea, guanidine HCl, and triton. Results and Conclusions Under our experimental conditions, iron reductive mobilization by the non-enzymatic FMN/NAD(P)H system is limited by the concentration of FMNH2 and is independent on the type or amount of chaotropes present. Diffusion of FMNH2 through the ferritin pores is an unlikely mechanism for ferritin iron reduction. An iron mobilization mechanism involving rapid electron transfer through the protein shell is discussed. General significance Caution must be exercised when interpreting the kinetics of iron mobilization from ferritin using the FMN/NAD(P)H system. The kinetics are highly dependent on the amount of dissolved oxygen and the concentration of reagents used.
Interconnected food, energy, and water (FEW) nexus systems face many challenges to support human well-being (HWB) and maintain resilience, especially in arid and semiarid regions like New Mexico (NM), United States (US). Insufficient FEW resources, unstable economic growth due to fluctuations in prices of crude oil and natural gas, inequitable education and employment, and climate change are some of these challenges. Enhancing the resilience of such coupled socio-environmental systems depends on the efficient use of resources, improved understanding of the interlinkages across FEW system components, and adopting adaptable alternative management strategies. The goal of this study was to develop a framework that can be used to enhance the resilience of these systems. An integrated food, energy, water, well-being, and resilience (FEW-WISE) framework was developed and introduced in this study. This framework consists mainly of five steps to qualitatively and quantitatively assess FEW system relationships, identify important external drivers, integrate FEW systems using system dynamics models, develop FEW and HWB performance indices, and develop a resilience monitoring criterion using a threshold-based approach that integrates these indices. The FEW-WISE framework can be used to evaluate and predict the dynamic behavior of FEW systems in response to environmental and socioeconomic changes using resilience indicators. In conclusion, the derived resilience index can be used to inform the decision-making processes to guide the development of alternative scenario-based management strategies to enhance the resilience of ecological and socioeconomic well-being of vulnerable regions like NM.
Drought is a familiar climatic phenomenon in the United States Southwest, with complex human-environment interactions that extend beyond just the physical drought events. Due to continued climate variability and change, droughts are expected to become more frequent and/or severe in the future. Decision-makers are charged with mitigating and adapting to these more extreme conditions and to do that they need to understand the specific impacts drought has on regional and local scales, and how these impacts compare to historical conditions. Tremendous progress in drought monitoring strategies has occurred over the past several decades, with more tools providing greater spatial and temporal resolutions for a variety of variables, including drought impacts. Many of these updated tools can be used to develop improved drought climatologies for decision-makers to use in their drought risk management actions. In support of a Food-Energy-Water (FEW) systems study for New Mexico, this article explores the use of updated drought monitoring tools to analyze data and develop a more holistic drought climatology applicable for New Mexico. Based upon the drought climatology, droughts appear to be occurring with greater frequency and magnitude over the last two decades. This improved drought climatology information, using New Mexico as the example, increases the understanding of the effects of drought on the FEW systems, allowing for better management of current and future drought events and associated impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.