Optofluidics integrates the fields of photonics and microfluidics, providing new freedom to both fields and permitting the realization of optical and fluidic property manipulations at the chip scale. Optofluidics was formed only after many breakthroughs in microfluidics, as understanding of fluid behaviour at the micron level enabled researchers to combine the advantages of optics and fluids. This review describes the progress of optofluidics from a photonics perspective, highlighting various optofluidic aspects ranging from the device's property manipulation to an interactive integration between optics and fluids. First, we describe photonic elements based on the functionalities that enable fluid manipulation. We then discuss the applications of optofluidic biodetection with an emphasis on nanosensing. Next, we discuss the progress of optofluidic lenses with an emphasis on its various architectures, and finally we conceptualize on where the field may lead.
Although surface-enhanced Raman spectroscopy (SERS) has previously been performed with nucleic acids, the measured intensities for each nucleic acid have varied significantly depending on the SERS substrate and excitation wavelength. We have demonstrated that the charge-transfer (CT) mechanism, also known as the chemical enhancement of SERS, is responsible for the discrepancies previously reported in literature. The electronic states of cytosine and guanine attached to silver atoms are computationally calculated and experimentally measured to be in the visible range, which leads to a resonance Raman effect at the corresponding maximum wavelengths. The resulting SERS measurements are in good agreement with the simulated values, in which cytosine-silver shows stronger enhancement at 532 nm and guanine-silver shows stronger enhancement at 785 nm. An atomic layer of aluminum oxide is deposited on substrates to prevent charge-transfer, and corresponding measurements show weaker Raman signals caused by the suppression of the chemical resonance. These findings suggest the optimal SERS signal can be achieved by tuning the excitation wavelength to match both the electromagnetic and chemical resonances, paving the way for future single molecule detection of nucleic acids other than adenine.
Music thanatology represents an emerging area in which the raw materials of music, usually harp and/or voice, assist and comfort the dying patient. During prescriptive "music vigils, " the clinician-musician carefully observes physiological changes, cues, and breathing patterns, thereby synchronizing the music to reflect or support the patient's physiology and overall condition. Using data collected from 65 patients, this study was designed to assess the effectiveness of prescriptive harp music on selected palliative care outcomes using a sample of de-identified data forms from past music vigils. Patients were administered a 25- to 95-minute intervention of prescriptive harp music. Data collected included vital signs and observational indicators before (Ti) and after (T2) the vigil. Patients were more likely to experience decreased levels of agitation and wakefulness while also breathing more slowly and deeply with less effort at the conclusion of the music vigil. Results from this study suggest that a prescriptive vigil conducted by a trained music thanatologist could provide an effective form of palliative care for dying patients.
Due to their sensitivity and temporal response, optical microresonators are used extensively in the biosensor arena, particularly in the development of label-free diagnostics and measurement of protein kinetics. In the present letter, we investigate using microcavities to probe molecules within biomimetic membranes. Specifically, a method for self-assembling lipid bilayers on spherical microresonators is developed and the bilayer-nature is verified. Subsequently, the microcavity is used to excite a Cy5-conjugated lipid located within the bilayer while the optical performance of the microcavity is characterized. The emission wavelength of the dye and the optical behavior of the microcavity agree with theoretical predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.