ABSTRACT. Long-term assessment of ecosystem restoration projects is complex because of ecological processes such as succession, particularly in highly dynamic ecosystems such as estuaries. Restoration of intertidal flats and marshes on formerly embanked land, often called managed coastal realignment (MR), became popular in estuarine management. In our study, biophysical and monetary data were collected to calculate the value of 15 (sub)ecosystem services (ES) delivered by a large tidal marsh restoration project in the Schelde estuary in Belgium and the Netherlands. We hypothesized that ES delivery changes over time due to ecological succession and hence the long-term benefits are subject to this phenomenon and need to be taken into consideration. A marsh sediment accretion model (MARSED) was used to simulate potential marsh succession scenarios. In this way, the temporal evolution of ES delivery caused by ecological succession could be evaluated. Our study shows that benefits during successional marsh stages could actually be higher than for marshes in equilibrium. This finding does not suggest that ecosystems in transition always have a higher value than systems in equilibrium, but emphasizes the need to consider long-term ecological dynamics, such as succession, in a benefit assessment for restoration projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.