Over the past few decades, Southeast Australia has experienced severe regional climatic events and some of the most extreme droughts on record, linked in part to influences from both the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). In this article, the extent to which austral winter rainfall anomalies, in years leading into co-occurring ENSO and IOD events, are communicated specifically through variations in atmospheric fronts is quantified. The most extreme wet (dry) conditions occur in winters characterized by sea surface temperature anomaly patterns exhibiting features of La Niña-Negative IOD (El Niño-Positive IOD). It is found that most of these precipitation anomalies are related to changes in the precipitation associated with the passing of atmospheric fronts specifically. Although there is some suggestion that there are accompanying changes in the frequency of atmospheric fronts, the response appears to be dominated by changes in the amount of precipitation per individual atmospheric front. In addition, the distribution in the dynamic strength of individual atmospheric fronts remains relatively unchanged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.