Global declines in biodiversity are altering disease dynamics in complex and multifaceted ways. Changes in biodiversity can have several outcomes on disease risk, including dilution and amplification effects, both of which can have a profound influence on the effects of disease in a community. The dilution effect occurs when biodiversity and disease risk are inversely related, whereas the amplification effect is a positive relationship between biodiversity and disease risk. We tested these effects with an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis (Bd), which is responsible for catastrophic amphibian population declines and extinctions worldwide. Despite the rapid and continued spread of Bd, the influence of host diversity on Bd dynamics remains unknown. We experimentally manipulated host diversity and density in the presence of Bd and found a dilution effect where increased species richness reduced disease risk, even when accounting for changes in density. These results demonstrate the general importance of incorporating community structure into studies of disease dynamics and have implications for the effects of Bd in ecosystems that differ in biodiversity.
Disease is often implicated as a factor in population declines of wildlife and plants. Understanding the characteristics that may predispose a species to infection by a particular pathogen can help direct conservation efforts. Recent declines in amphibian populations world-wide are a major conservation issue and may be caused in part by a fungal pathogen, Batrachochytrium dendrobatidis (Bd). We used Random Forest, a machine learning approach, to identify species-level characteristics that may be related to susceptibility to Bd. Our results suggest that body size at maturity, aspects of egg laying behavior, taxonomic order and family, and reliance on water are good predictors of documented infection for species in the continental United States. These results suggest that, whereas local-scale environmental variables are important to the spread of Bd, species-level characteristics may also influence susceptibility to Bd. The relationships identified in this study suggest future experimental tests, and may target species for conservation efforts.
Ultraviolet-B radiation (UVB) is a ubiquitous stressor with negative effects on many aquatic organisms. In amphibians, ambient levels of UVB can result in impaired growth, slowed development, malformations, altered behavior and mortality. UVB can also interact with other environmental stressors to amplify these negative effects on individuals. In outdoor mesocosm and laboratory experiments we studied potential synergistic effects of UVB, a pathogenic fungus, Batrachochytrium dendrobatidis (Bd), and varying temperatures on larval Cascades frogs (Rana cascadae). First, we compared survivorship, growth and development in two mesocosm experiments with UVB- and Bd-exposure treatments. We then investigated the effects of UVB on larvae in the laboratory under two temperature regimes, monitoring survival and behavior. We found reduced survival of R. cascadae larvae with exposure to UVB radiation in all experiments. In the mesocosm experiments, growth and development were not affected in either treatment, and no effect of Bd was found. In the laboratory experiment, larvae exposed to UVB demonstrated decreased activity levels. We also found a trend towards reduced survival when UVB and cold temperatures were combined. Our results show that amphibian larvae can suffer both lethal and sublethal effects when exposed to UVB radiation.
Despite the use of model species to predict the effects of chemicals in the environment, unpredicted variation in levels of risk to organisms from xenobiotics can be observed. Physiological and morphological differences between species and life stages may lead to differences in sensitivity, while seasonal and spatial variation in pesticide concentrations may affect the level of risk faced by organisms in the environment. Because anurans breed in aquatic habitats subject to contamination by runoff and spraying, they are particularly vulnerable to pesticides. In the present study, embryos, newly hatched larvae, and larvae with limb buds of 3 anuran amphibian species--Pseudacris regilla, Rana cascadae, and Rana aurora--were exposed for 48 h to either 0.5 µg/L or 5.0 µg/L cypermethrin under laboratory conditions. The authors monitored hatching success, larval survival, and measured growth. Additionally, they assayed avoidance behavior 2 wk after exposure or 2 wk after hatching for individuals exposed as embryos. Hatching and survival were not affected in animals of any species exposed as embryos. After exposure as embryos and as newly hatched larvae, however, P. regilla displayed behavioral abnormalities in response to prodding. Cypermethrin increased mortality in P. regilla exposed in both larval stages. Cypermethrin also increased mortality in larval R. cascadae when exposed at the early stage. These results indicate variation in sensitivity to environmentally relevant concentrations of cypermethrin among anuran species and life stages.
The need for long-term demographic studies on apparently healthy amphibian populations led us to undertake an intensive examination of a population of Spotted Salamanders (Ambystoma maculatum) at a small, temporary pond in Ohio. From 2005 to 2014, we captured adults and juveniles at the pond edge, individually marked a subset of adults, and examined patterns in breeding population size, sex ratios, recruitment, differences in body size over time, and survival and recapture rates. We found that this breeding population size varied 2.65fold across 10 yr, with an overall negative trend driven by a decline in adult males, despite the fact that adult annual survival was not dependent on sex, and that males were more likely to be recaptured annually than were females. We also found that recruitment rates were low and never reached replacement values. Body sizes varied across years for adults as well as for emerging juveniles, and females lost a larger fraction of their mass in the pond than males, especially as time in the pond increased. Some demographic variables were consistent with previous shorter term studies. We found unusually low recruitment and annual recapture rates, however, in addition to a decline in males over time, which might reflect an expansion of our understanding of what is typical for this species. It might also indicate that our population was in the early stages of decline, potentially affected by changes in hydroperiod and increases in infectious disease mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.