We developed an automated system that can be used to decellularize whole human-sized organs and have shown lung as an example. Lungs from 20 to 30 kg pigs were excised en bloc with the trachea and decellularized with our established protocol of deionized water, detergents, sodium chloride, and porcine pancreatic DNase. A software program was written to control a valve manifold assembly that we built for selection and timing of decellularization fluid perfusion through the airway and the vasculature. This system was interfaced with a prototypic bioreactor chamber that was connected to another program, from a commercial source, which controlled the volume and flow pressure of fluids. Lung matrix that was decellularized by the automated method was compared to a manual method previously used by us and others. Automation resulted in more consistent acellular matrix preparations as demonstrated by measuring levels of DNA, hydroxyproline (collagen), elastin, laminin, and glycosaminoglycans. It also proved highly beneficial in saving time as the decellularization procedure was reduced from days down to just 24 h. Developing a rapid, controllable, automated system for production of reproducible matrices in a closed system is a major step forward in whole-organ tissue engineering.
Alveolar epithelial type I cell (ATI) wounding is prevalent in ventilator-injured lungs and likely contributes to pathogenesis of "barotrauma" and "biotrauma." In experimental models most wounded alveolar cells repair plasma membrane (PM) defects and survive insults. Considering the force balance between edge energy at the PM wound margins and adhesive interactions of the lipid bilayer with the underlying cytoskeleton (CSK), we tested the hypothesis that subcortical actin depolymerization is a key facilitator of PM repair. Using real-time fluorescence imaging of primary rat ATI transfected with a live cell actin-green fluorescent protein construct (Lifeact-GFP) and loaded with N-rhodamine phosphatidylethanolamine (PE), we examined the spatial and temporal coordination between cytoskeletal remodeling and PM repair following micropuncture. Membrane integrity was inferred from the fluorescence intensity profiles of the cytosolic label calcein AM. Wounding led to rapid depolymerization of the actin CSK near the wound site, concurrent with accumulation of endomembrane-derived N-rhodamine PE. Both responses were sustained until PM integrity was reestablished, which typically occurs between ∼10 and 40 s after micropuncture. Only thereafter did the actin CSK near the wound begin to repolymerize, while the rate of endomembrane lipid accumulation decreased. Between 60 and 90 s after successful PM repair, after translocation of the actin nucleation factor cortactin, a dense actin fiber network formed. In cells that did not survive micropuncture injury, actin remodeling did not occur. These novel results highlight the importance of actin remodeling in ATI cell repair and suggest molecular targets for modulating the repair process.
The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases.
We present plasma membrane (PM) internalization responses of type I alveolar epithelial cells to a 50 mosmol/l increase in tonicity. Our research is motivated by interest in ATI repair, for which endocytic retrieval of PM appears to be critical. We validated pharmacological and molecular tools to dissect the endocytic machinery of these cells and used these tools to test the hypothesis that osmotic stress triggers a pathway-specific internalization of PM domains. Validation experiments confirmed the fluorescent analogs of lactosyl-ceramide, transferrin, and dextran as pathway-specific cargo of caveolar, clathrin, and fluid-phase uptake, respectively. Pulse-chase experiments indicate that hypertonic exposure causes a downregulation of clathrin and fluid-phase endocytosis while stimulating caveolar endocytosis. The tonicity-mediated increase in caveolar endocytosis was associated with the translocation of caveolin-1 from the PM and was absent in cells that had been transfected with dominant-negative dynamin constructs. In separate experiments we show that hypertonic exposure increases the probability of PM wound repair following micropuncture from 82 ± 4 to 94 ± 2% (P < 0.01) and that this effect depends on Src pathway activation-mediated caveolar endocytosis. The therapeutic and biological implications of our findings are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.