A number of factors have been proposed to influence within and between species variation in handedness in non-human primates. In the initial study, we assessed the influence of grip morphology on hand use for simple reaching in a sample of 564 great apes including 49 orangutans Pongo pygmaeus, 66 gorillas Gorilla gorilla, 354 chimpanzees Pan troglodytes and 95 bonobos Pan paniscus. Overall, we found a significant right hand bias for reaching. We also found a significant effect of the grip morphology of hand use. Grasping with the thumb and index finger was more prevalent in the right compared to left hand in all four species. There was no significant sex effect on the patterns of handedness. In a subsample of apes, we also compared consistency in hand use for simple reaching with previously published data on a task that measures handedness for bimanual actions. We found that the ratio of subjects with consistent right compared to left hand use was more prevalent in bonobos, chimpanzees and gorillas but not orangutans. However, for all species, the proportion of subjects with inconsistent hand preferences between the tasks was relatively high suggesting some measures may be more sensitive in assessing handedness than others.
The ability to recognize one’s own reflection is shared by humans and only a few other species, including chimpanzees. However, this ability is highly variable across individual chimpanzees. In humans, self-recognition involves a distributed, right-lateralized network including frontal and parietal regions involved in the production and perception of action. The superior longitudinal fasciculus (SLF) is a system of white matter tracts linking these frontal and parietal regions. The current study measured mirror self-recognition (MSR) and SLF anatomy in 60 chimpanzees using diffusion tensor imaging. Successful self-recognition was associated with greater rightward asymmetry in the white matter of SLFII and SLFIII, and in SLFIII’s gray matter terminations in Broca’s area. We observed a visible progression of SLFIII’s prefrontal extension in apes that show negative, ambiguous, and compelling evidence of MSR. Notably, SLFIII’s terminations in Broca’s area are not right-lateralized or particularly pronounced at the population level in chimpanzees, as they are in humans. Thus, chimpanzees with more human-like behavior show more human-like SLFIII connectivity. These results suggest that self-recognition may have co-emerged with adaptations to frontoparietal circuitry.
The mark/rouge test has been used to assess mirror self-recognition (MSR) in many species. Despite consistent evidence of MSR in great apes, genetic or non-genetic factors may account for the individual differences in behavioral responses that have been reported. We examined whether vasopressin receptor gene (AVPR1A) polymorphisms are associated with MSR-related behaviors in chimpanzees since vasopressin has been implicated in the development and evolution of complex social relations and cognition and chimpanzees are polymorphic for the presence of the RS3-containing DupB region. We compared a sample of DupB+/- and DupB-/- chimpanzees on a mark test to assess its role on social behavior toward a mirror. Chimpanzees were administered two, 10-min sessions where frequencies of mirror-guided self-directed behaviors, contingent actions and other social behaviors were recorded. Approximately one-third showed evidence of MSR and these individuals exhibited more mirror-guided self-exploratory behaviors and mouth contingent actions than chimpanzees not classified as passers. Moreover, DupB+/- males exhibited more scratching and agonistic behaviors than other male and female cohorts. Our findings support previous studies demonstrating individual differences in MSR abilities in chimpanzees and suggest that AVPR1A partly explains individual differences in MSR by influencing the behavioral reactions of chimpanzees in front of a mirror.
There is much experimental evidence suggesting that chimpanzees understand that others see. However, previous research has never experimentally ruled out the alternative explanation that chimpanzees are just responding to the geometric cue of 'direct line of gaze', the observable correlate of seeing in others. Here, we sought to resolve this ambiguity by dissociating seeing from direct line of gaze using a mirror. We investigated the frequency of chimpanzees' visual gestures towards a human experimenter who could see them (as a result of looking into a mirror) but who lacked a direct line of gaze to them (as a result of having his/her head turned away). Chimpanzees produced significantly more visual gestures when the experimenter could see them than when he/she could not, even when the experimenter did not have a direct line of gaze to them. Results suggest that chimpanzees, through a possible process of experience projection based on their own prior experience with mirrors, infer that an experimenter looking at the mirror can see them. We discuss our results in relation to the theory of mind hypothesis that chimpanzees understand seeing in others, and we evaluate possible alternative low-level explanations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.