Pressure Injuries (PI) are one of the most common health conditions in the United States. Most acute or long-term care patients are at risk of developing PI. Machine Learning (ML) has been utilized to manage patients with PI, in which one systematic review describes how ML is used in PI management in 32 studies. This research, different from the previous systematic review, summarizes the previous contributions of ML in PI from January 2007 to July 2022, categorizes the studies according to medical specialties, analyzes gaps, and identifies opportunities for future research directions. PRISMA guidelines were adopted using the four most common databases (PubMed, Web of Science, Scopus, and Science Direct) and other resources, which result in 90 eligible studies. The reviewed articles are divided into three categories based on PI time of occurrence: before occurrence (48%); at time of occurrence (16%); and after occurrence (36%). Each category is further broken down into sub-fields based on medical specialties, which result in sixteen specialties. Each specialty is analyzed in terms of methods, inputs, and outputs. The most relevant and potentially useful applications and methods in PI management are outlined and discussed. This includes deep learning techniques and hybrid models, integration of existing risk assessment tools with ML that leads to a partnership between provider assessment and patients’ Electronic Health Records (EHR).
Hospital-Acquired Pressure Injury (HAPI), known as bedsore or decubitus ulcer, is one of the most common health conditions in the United States. Machine learning has been used to predict HAPI. This is insufficient information for the clinical team because knowing who would develop HAPI in the future does not help differentiate the severity of those predicted cases. This research develops an integrated system of multifaceted machine learning models to predict if and when HAPI occurs. Phase 1 integrates Genetic Algorithm with Cost-Sensitive Support Vector Machine (GA-CS-SVM) to handle the high imbalance HAPI dataset to predict if patients will develop HAPI. Phase 2 adopts Grid Search with SVM (GS-SVM) to predict when HAPI will occur for at-risk patients. This helps to prioritize who is at the highest risk and when that risk will be highest. The performance of the developed models is compared with state-of-the-art models in the literature. GA-CS-SVM achieved the best Area Under the Curve (AUC) (75.79 ± 0.58) and G-mean (75.73 ± 0.59), while GS-SVM achieved the best AUC (75.06) and G-mean (75.06). The research outcomes will help prioritize at-risk patients, allocate targeted resources and aid with better medical staff planning to provide intervention to those patients.
Background: The Braden Scale is commonly used to determine Hospital-Acquired Pressure Injuries (HAPI). However, the volume of patients who are identified as being at risk stretches already limited resources, and caregivers are limited by the number of factors that can reasonably assess during patient care. In the last decade, machine learning techniques have been used to predict HAPI by utilizing related risk factors. Nevertheless, none of these studies consider the change in patient status from admission until discharge. Objectives: To develop an integrated system of Braden and machine learning to predict HAPI and assist with resource allocation for early interventions. The proposed approach captures the change in patients’ risk by assessing factors three times across hospitalization. Design: Retrospective observational cohort study. Setting(s): This research was conducted at ChristianaCare hospital in Delaware, United States. Participants: Patients discharged between May 2020 and February 2022. Patients with HAPI were identified from Nursing documents (N = 15,889). Methods: Support Vector Machine (SVM) was adopted to predict patients’ risk for developing HAPI using multiple risk factors in addition to Braden. Multiple performance metrics were used to compare the results of the integrated system versus Braden alone. Results: The HAPI rate is 3%. The integrated system achieved better sensitivity (74.29 ± 1.23) and detection prevalence (24.27 ± 0.16) than the Braden scale alone (sensitivity (66.90 ± 4.66) and detection prevalence (41.96 ± 1.35)). The most important risk factors to predict HAPI were Braden sub-factors, overall Braden, visiting ICU during hospitalization, and Glasgow coma score. Conclusions: The integrated system which combines SVM with Braden offers better performance than Braden and reduces the number of patients identified as at-risk. Furthermore, it allows for better allocation of resources to high-risk patients. It will result in cost savings and better utilization of resources. Relevance to clinical practice: The developed model provides an automated system to predict HAPI patients in real time and allows for ongoing intervention for patients identified as at-risk. Moreover, the integrated system is used to determine the number of nurses needed for early interventions. Reporting Method: EQUATOR guidelines (TRIPOD) were adopted in this research to develop the prediction model. Patient or Public Contribution: This research was based on a secondary analysis of patients’ Electronic Health Records. The dataset was de-identified and patient identifiers were removed before processing and modeling.
Background and Objectives: Bedsores/Pressure Injuries (PIs) are the second most common diagnosis in healthcare system billing records in the United States and account for 60,000 deaths annually. Hospital-Acquired Pressure Injuries (HAPIs) are one classification of PIs and indicate injuries that occurred while the patient was cared for within the hospital. Until now, all studies have predicted who will develop HAPI using classic machine algorithms, which provides incomplete information for the clinical team. Knowing who will develop HAPI does not help differentiate at which point those predicted patients will develop HAPIs; no studies have investigated when HAPI develops for predicted at-risk patients. This research aims to develop a hybrid system of Random Forest (RF) and Braden Scale to predict HAPI time by considering the changes in patients’ diagnoses from admission until HAPI occurrence. Methods: Real-time diagnoses and risk factors were collected daily for 485 patients from admission until HAPI occurrence, which resulted in 4619 records. Then for each record, HAPI time was calculated from the day of diagnosis until HAPI occurrence. Recursive Feature Elimination (RFE) selected the best factors among the 60 factors. The dataset was separated into 80% training (10-fold cross-validation) and 20% testing. Grid Search (GS) with RF (GS-RF) was adopted to predict HAPI time using collected risk factors, including Braden Scale. Then, the proposed model was compared with the seven most common algorithms used to predict HAPI; each was replicated for 50 different experiments. Results: GS-RF achieved the best Area Under the Curve (AUC) (91.20 ± 0.26) and Geometric Mean (G-mean) (91.17 ± 0.26) compared to the seven algorithms. RFE selected 43 factors. The most dominant interactable risk factors in predicting HAPI time were visiting ICU during hospitalization, Braden subscales, BMI, Stimuli Anesthesia, patient refusal to change position, and another lab diagnosis. Conclusion: Identifying when the patient is likely to develop HAPI can target early intervention when it is needed most and reduces unnecessary burden on patients and care teams when patients are at lower risk, which further individualizes the plan of care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.