SummaryLysosomes have traditionally been viewed as degradative organelles, although a growing body of evidence suggests that they can function as Ca2+ stores. Here we examined the function of these stores in hippocampal pyramidal neurons. We found that back-propagating action potentials (bpAPs) could elicit Ca2+ release from lysosomes in the dendrites. This Ca2+ release triggered the fusion of lysosomes with the plasma membrane, resulting in the release of Cathepsin B. Cathepsin B increased the activity of matrix metalloproteinase 9 (MMP-9), an enzyme involved in extracellular matrix (ECM) remodelling and synaptic plasticity. Inhibition of either lysosomal Ca2+ signaling or Cathepsin B release prevented the maintenance of dendritic spine growth induced by Hebbian activity. This impairment could be rescued by exogenous application of active MMP-9. Our findings suggest that activity-dependent exocytosis of Cathepsin B from lysosomes regulates the long-term structural plasticity of dendritic spines by triggering MMP-9 activation and ECM remodelling.
A rise in [Ca(2+)](i) provides the trigger for neurotransmitter release at neuronal boutons. We have used confocal microscopy and Ca(2+) sensitive dyes to directly measure the action potential-evoked [Ca(2+)](i) in the boutons of Schaffer collaterals. This reveals that the trial-by-trial amplitude of the evoked Ca(2+) transient is bimodally distributed. We demonstrate that "large" Ca(2+) transients occur when presynaptic NMDA receptors are activated following transmitter release. Presynaptic NMDA receptor activation proves critical in producing facilitation of transmission at theta frequencies. Because large Ca(2+) transients "report" transmitter release, their frequency on a trial-by-trial basis can be used to estimate the probability of release, p(r). We use this novel estimator to show that p(r) increases following the induction of long-term potentiation.
Autosomal dominant GH deficiency type II (IGHDII) is often associated with mutations in the human GH gene (GH1) that give rise to products lacking exon-3 ((Deltaexon3)hGH). In the heterozygous state, these act as dominant negative mutations that prevent the release of human pituitary GH (hGH). To determine the mechanisms of these dominant negative effects, we used a combination of transgenic and morphological approaches in both in vitro and in vivo models. Rat GC cell lines were generated expressing either wild-type GH1 (WT-hGH-GC) or a genomic GH1 sequence containing a G->A transition at the donor splice site of IVS3 ((Deltaexon3)hGH-GC). WT-hGH-GC cells grew normally and produced equivalent amounts of human and rGH packaged in dense-cored secretory vesicles (SVs). In contrast, (Deltaexon3)hGH-GC cells showed few SVs but accumulated secretory product in amorphous cytoplasmic aggregates. They produced much less rGH and grew more slowly than WT-hGH-GC cells. When cotransfected with an enhanced green fluorescent protein construct (GH-eGFP), which copackages with GH in SVs, WT-hGH-GC cells showed normal electron microscopy morphology and SV movements, tracked with total internal reflectance fluorescence microscopy. In contrast, coexpression of (Deltaexon3)hGH with GH-eGFP abolished the vesicular targeting of GH-eGFP, which instead accumulated in static aggregates. Transgenic mice expressing (Deltaexon3)hGH in somatotrophs showed an IGHD-II phenotype with mild to severe pituitary hypoplasia and dwarfism, evident at weaning in the most severely affected lines. Hypothalamic GHRH expression was up-regulated and somatostatin expression reduced in (Deltaexon3)hGH transgenic mice, consistent with their profound GHD. Few SVs were detectable in the residual pituitary somatotrophs in (Deltaexon3)hGH transgenic mice, and these cells showed grossly abnormal morphology. A low copy number transgenic line showed a mild effect relatively specific for GH, whereas two severely affected lines with higher transgene copy numbers showed early onset, widespread pituitary damage, macrophage invasion, and multiple hormone deficiencies. These new in vitro and in vivo models shed new light on the cellular mechanisms involved in IGHDII, as well as its phenotypic consequences in vivo.
The expression mechanism of long-term potentiation (LTP) remains controversial. Here we combine electrophysiology and Ca(2+) imaging to examine the role of silent synapses in LTP expression. Induction of LTP fails to change p(r) at these synapses but instead mediates an unmasking process that is sensitive to the inhibition of postsynaptic membrane fusion. Once unmasked, however, further potentiation of formerly silent synapses leads to an increase in p(r). The state of the synapse thus determines how LTP is expressed.
For infectious prion protein (designated PrPSc) to act as a template to convert normal cellular protein (PrPC) to its distinctive pathogenic conformation, the two forms of prion protein (PrP) must interact closely. The neuronal receptor that rapidly endocytoses PrPC is the low-density lipoprotein receptor-related protein 1 (LRP1). We show here that on sensory neurons LRP1 is also the receptor that binds and rapidly endocytoses smaller oligomeric forms of infectious prion fibrils, and recombinant PrP fibrils. Although LRP1 binds two molecules of most ligands independently to its receptor clusters 2 and 4, PrPC and PrPSc fibrils bind only to receptor cluster 4. PrPSc fibrils out-compete PrPC for internalization. When endocytosed, PrPSc fibrils are routed to lysosomes, rather than recycled to the cell surface with PrPC. Thus, although LRP1 binds both forms of PrP, it traffics them to separate fates within sensory neurons. The binding of both to ligand cluster 4 should enable genetic modification of PrP binding without disrupting other roles of LRP1 essential to neuronal viability and function, thereby enabling in vivo analysis of the role of this interaction in controlling both prion and LRP1 biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.