Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products.
Spatial monitoring campaigns of volatile organic compounds were carried out in two similarly sized urban industrial cities, Windsor and Sarnia, ON, Canada. For Windsor, data were obtained for all four seasons at approximately 50 sites in each season (winter, spring, summer, and fall) over a three-year period (2004, 2005, and 2006) for a total of 12 sampling sessions. Sampling in Sarnia took place at 37 monitoring sites in fall 2005. In both cities, passive sampling was done using 3M 3500 organic vapor samplers. This paper characterizes benzene, toluene, ethylbenzene, o, and (m + p)-xylene (BTEX) concentrations and relationships among BTEX species in the two cities during the fall sampling periods. BTEX concentration levels and rank order among the species were similar between the two cities. In Sarnia, the relationships between the BTEX species varied depending on location. Correlation analysis between land use and concentration ratios showed a strong influence from local industries. Use one of the ratios between the BTEX species to diagnose photochemical age may be biased due to point source emissions, for example, 53 tonnes of benzene and 86 tonnes of toluene in Sarnia. However, considering multiple ratios leads to better conclusions regarding photochemical aging. Ratios obtained in the sampling campaigns showed significant deviation from those obtained at central monitoring stations, with less difference in the (m + p)/E ratio but better overall agreement in Windsor than in Sarnia.
Exposure to fine particulate matter (PM) results in adverse health outcomes. Although this is a global concern, residents of China may be particularly vulnerable due to frequent severe air pollution episodes associated with economic growth, industrialization, and urbanization. Until 2012, PM2.5 was not regulated and monitored in China and annual average concentrations far exceeded the World Health Organizations guidelines of 10 μg/m3. Since the establishment of PM2.5 Ambient Air Quality Criteria in 2012, concentrations have decreased, but still pose significant health risks. A review of ambient PM2.5 health effect studies is warranted to evaluate the current state of knowledge and to prioritize future research efforts. Our review found that recent literature has confirmed associations between PM2.5 exposure and total mortality, cardiovascular mortality, respiratory mortality, hypertension, lung cancer, influenza and other adverse health outcomes. Future studies should take a long-term approach to verify associations between exposure to PM2.5 and health effects. In order to obtain adequate exposure assessment at finer spatial resolutions, high density sampling, satellite remote sensing, or models should be employed. Personal monitoring should also be conducted to validate the use of outdoor concentrations as proxies for exposure. More research efforts should be devoted to seasonal patterns, sub-population susceptibility, and the mechanism by which exposure causes health effects. Submicron and ultrafine PM should also be monitored and regulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.