Stress fractures are common overuse injuries in athletes. They occur during periods of increased training without adequate rest, disrupting normal bone reparative mechanisms. There are a host of intrinsic and extrinsic factors, including biochemical and biomechanical, that put athletes at risk. In most stress fractures, the diagnosis is primarily clinical, with imaging indicated at times, and management focused on symptom-free relative rest with advancement of activity as tolerated. Overall, stress fractures in athletes have an excellent prognosis for return to sport, with little risk of complication. There is a subset of injuries that have a greater risk of fracture progression, delayed healing, and nonunion and are generally more challenging to treat with nonoperative care. Specific locations of high-risk stress fracture include the femoral neck (tension side), patella, anterior tibia, medial malleolus, talus, tarsal navicular, proximal fifth metatarsal, and great toe sesamoids. These sites share a characteristic region of high tensile load and low blood flow. High-risk stress fractures require a more aggressive approach to evaluation, with imaging often necessary, to confirm early and accurate diagnosis and initiate immediate treatment. Treatment consists of nonweight-bearing immobilization, often with a prolonged period away from sport, and a more methodic and careful reintroduction to athletic activity. These stress fractures may require surgical intervention. A high index of suspicion is essential to avoid delayed diagnosis and optimize outcomes in this subset of stress fractures.
Context:Exercise or rest is commonly prescribed as treatment for patellofemoral pain syndrome.Study Selection:This study is based on Level I or II research studies examining the effects of exercise and rest on decreasing pain (visual analog scale) and increasing function (Kujala Scoring Questionnaire) using human participants. Articles were limited to those printed in English from PubMed (1966–September 2010), CINAHL (1982–September 2010), and SPORTDiscus (1972–September 2010).Data Extraction:Weighted aggregate effect sizes and 95% confidence intervals were calculated from means and standard deviations extracted from 10 studies, resulting in an analysis of 433 patients.Results:A very large effect for exercise was found for patient-reported functional outcomes (d = 2.19) and perceived pain (d = −1.24) in treated patients, which were larger than functional outcomes (d = 0.77) and pain (d = −0.14) in controls. Short-term follow-up of 191 patients from 4 data sets in 2 studies revealed a large effect for functional outcomes (d = 1.04) and pain (d = −0.82) in patients who performed an exercise intervention. One study reported moderate effect sizes for functional outcomes (d = 0.59) and pain (d = −0.35) at 3 months postintervention.Conclusions:Exercise is the more effective treatment for immediate decrease in pain and increase in function although these differences appear to be less distinguishable over time.
Hyperbaric oxygen therapy (HBOT) is a well-established treatment for a variety of conditions. Hyperbaric oxygen therapy is the administration of 100% oxygen breathing in a pressure vessel at higher than atmospheric pressure (1 atmosphere absolute = 101 kPa). Typically, treatment is given daily for between 1 and 2 h at pressures of 2.0 to 2.8 ATA, depending on the indication. Sporting injuries are often treated over 3 to 10 sessions. Hyperbaric oxygen therapy has been documented to be effective and is approved in 14 medical indications by the Undersea and Hyperbaric Medical Society, including, but not limited to, carbon monoxide poisoning, compromised skin grafts and flaps, crush injuries, necrotizing soft tissue infections, and nonhealing ulcers with arterial insufficiencies. Recently, HBOT for sports musculoskeletal injuries is receiving increased attention. Hyperbaric oxygen therapy may allow injured athletes to recover faster than normal rehabilitation methods. Any reduction in collegiate and professional athletes’ rehabilitation period can be financially significant for top-level sports teams; however, further research is required to confirm HBOT’s benefits on sports musculoskeletal injuries. The purpose of this review to discuss the current understanding of HBOT as a treatment modality for common musculoskeletal injuries in sport medicine. Moreover, we will highlight the advantages and disadvantages of this modality, as well as relevant clinical and research applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.