Metal aquo ions occupy central roles in all equilibria that define metal complexation in natural environments. These complexes are used to establish thermodynamic metrics (i.e., stability constants) for predicting metal binding, which are essential for defining critical parameters associated with aqueous speciation, metal chelation, in vivo transport, and so on. As such, establishing the fundamental chemistry of the actinium(III) aquo ion (Ac-aquo ion, Ac(H2O)x3+) is critical for current efforts to develop 225Ac [t1/2 = 10.0(1) d] as a targeted anticancer therapeutic agent. However, given the limited amount of actinium available for study and its high radioactivity, many aspects of actinium chemistry remain poorly defined. We overcame these challenges using the longer-lived 227Ac [t1/2 = 21.772(3) y] isotope and report the first characterization of this fundamentally important Ac-aquo coordination complex. Our X-ray absorption fine structure study revealed 10.9 ± 0.5 water molecules directly coordinated to the AcIII cation with an Ac–OH2O distance of 2.63(1) Å. This experimentally determined distance was consistent with molecular dynamics density functional theory results that showed (over the course of 8 ps) that AcIII was coordinated by 9 water molecules with Ac–OH2O distances ranging from 2.61 to 2.76 Å. The data is presented in the context of other actinide(III) and lanthanide(III) aquo ions characterized by XAFS and highlights the uniqueness of the large AcIII coordination numbers and long Ac–OH2O bond distances.
RecN is a cohesin-like protein involved in DNA double-strand break repair in bacteria. The RecA recombinase functions to mediate repair via homologous DNA strand invasion to form D-loops. Here we provide evidence that the RecN protein stimulates the DNA strand invasion step of RecA-mediated recombinational DNA repair. The intermolecular DNA tethering activity of RecN protein described previously cannot fully explain this novel activity since stimulation of RecA function is species-specific and requires RecN ATP hydrolysis. Further, DNA-bound RecA protein increases the rate of ATP hydrolysis catalysed by RecN during the DNA pairing reaction. DNA-dependent RecN ATPase kinetics are affected by RecA protein in a manner suggesting a specific order of protein–DNA assembly, with RecN acting after RecA binds DNA. We present a model for RecN function that includes presynaptic stimulation of the bacterial repair pathway perhaps by contributing to the RecA homology search before ternary complex formation.
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer that does not respond to endocrine therapy or human epidermal growth factor receptor 2 (HER2)–targeted therapies. Individuals with TNBC experience higher rates of relapse and shorter overall survival compared to patients with receptor-positive breast cancer subtypes. Preclinical discoveries are needed to identify, develop, and advance new drug targets to improve outcomes for patients with TNBC. Here, we report that MYCN, an oncogene typically overexpressed in tumors of the nervous system or with neuroendocrine features, is heterogeneously expressed within a substantial fraction of primary and recurrent TNBC and is expressed in an even higher fraction of TNBCs that do not display a pathological complete response after neoadjuvant chemotherapy. We performed high-throughput chemical screens on TNBC cell lines with varying amounts of MYCN expression and determined that cells with higher expression of MYCN were more sensitive to bromodomain and extraterminal motif (BET) inhibitors. Combined BET and MEK inhibition resulted in a synergistic decrease in viability, both in vitro and in vivo, using cell lines and patient-derived xenograft (PDX) models. Our preclinical data provide a rationale to advance a combination of BET and MEK inhibitors to clinical investigation for patients with advanced MYCN-expressing TNBC.
Abstractp53 is mutated in over half of human cancers. In addition to losing wild-type (WT) tumor-suppressive function, mutant p53 proteins are proposed to acquire gain-of-function (GOF) activity, leading to novel oncogenic phenotypes. To study mutant p53 GOF mechanisms and phenotypes, we genetically engineered non-transformed and tumor-derived WT p53 cell line models to express endogenous missense mutant p53 (R175H and R273H) or to be deficient for p53 protein (null). Characterization of the models, which initially differed only by TP53 genotype, revealed that aneuploidy frequently occurred in mutant p53-expressing cells. GOF phenotypes occurred clonally in vitro and in vivo, were independent of p53 alteration and correlated with increased aneuploidy. Further, analysis of outcome data revealed that individuals with aneuploid-high tumors displayed unfavorable prognoses, regardless of the TP53 genotype. Our results indicate that genetic variation resulting from aneuploidy accounts for the diversity of previously reported mutant p53 GOF phenotypes.
Rhenium-186g is a radionuclide with a high potential for therapeutic applications. It emits therapeutic β − particles accompanied by low energy γ-rays, which allows for in-vivo tracking of the radiolabeled compound and dosimetry estimates. The current reactor production pathway 185Re(n, γ)186gRe produces low specific activity 186gRe, thereby limiting its therapeutic application. Work is underway to develop an accelerator-based, charged particle induced production method for high specific activity 186gRe from targets of enriched 186W. To optimize the chemical 186gRe recovery method, batch studies have been performed to characterize the adsorption behavior of Re and W on a strongly basic anion exchange resin. An in-depth physicochemical profile was developed for the interaction of Re with resin material, which showed the reaction to be endothermic and spontaneous. Basic (NaOH) and acidic (HNO3) matrices were used to determine the equilibrium distribution coefficients for Re and W. The resin exhibits the best affinity for Re at slightly basic conditions and little affinity above moderately acidic concentrations. Tungsten has low affinity for the resin above moderately basic concentrations. A study was performed to examine the effect of W concentration on Re adsorption, which showed that even a high ionic WO4 2– strength of up to 1.9 mol kg –1 does not significantly compromise ReO4 – retention on the resin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.