Abstract-Poststroke motor control is characterized by greatly reduced muscle power generation. To date, the extent to which muscle power limits walking performance or whether its remediation should be a primary component of locomotor rehabilitation has yet to be established. The purpose of this study was to examine the feasibility and the effects of Poststroke Optimization of Walking using Explosive Resistance training, an intervention aimed at improving poststroke muscular and locomotor function. Twelve subjects (6-60 mo poststroke) participated in 24 training sessions (3 sessions/wk for 8 wk). Exercises included leg press, calf raises, and jump training, all performed at high concentric velocity, as well as trials of fast walking. We measured selfselected and fastest comfortable walking speeds as well as knee extensor and plantar flexor strength and power at pretraining, posttraining, and 8 wk follow-up time points. In addition, we also performed a number of clinical assessments commonly used in poststroke rehabilitation trials. Following training, significant improvements in lower-limb muscle strength and power were realized and accompanied by improvements in self-selected as well as fastest comfortable walking speeds. No changes in clinical assessments resulted from training.
Background
Gait instability often limits post-stroke function, although the mechanisms underlying this instability are not entirely clear. Our recent work has suggested that one possible factor contributing to post-stroke gait instability is a reduced ability to accurately control foot placement. The purpose of the present experiments was to investigate whether post-stroke gait function is related to the ability to accurately abduct and adduct the hip, as required for accurate foot placement.
Methods
35 chronic stroke survivors and 12 age-matched controls participated in this experiment. Participants performed hip oscillation trials designed to quantify hip abduction/adduction accuracy, in which they lay supine and moved their leg through a prescribed range of motion in time with a metronome. Stroke survivors also performed overground walking trials at their self-selected speed.
Findings
28 of the 35 stroke survivors had sufficient active range of motion to perform the prescribed hip oscillation task. In comparison to controls, these 28 stroke survivors were significantly less accurate at matching the abduction target, matching the adduction target, and moving in time with the metronome. Across these stroke survivors, a multiple regression revealed that only paretic hip abduction accuracy made a unique contribution to predicting paretic step width and paretic step period, metrics of gait performance.
Interpretation
The present results demonstrate that the ability to accurately abduct the hip is related to post-stroke gait performance, as predicted from a model-based gait stabilization strategy. Therefore, interventions designed to improve lower limb movement accuracy may hold promise for restoring post-stroke gait stability.
These data demonstrate that lower extremity strength is associated with walking ability after iSCI. Correlations for the muscle groups of the move-involved side were stronger compared to the less-involved limb. In addition, PF function is highlighted as a potential limiting factor to walking speed along with the importance of RTD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.