Background: Racial inequities for patients with heart failure (HF) have been widely documented. HF patients who receive cardiology care during a hospital admission have better outcomes. It is unknown whether there are differences in admission to a cardiology or general medicine service by race. This study examined the relationship between race and admission service, and its effect on 30-day readmission and mortality Methods: We performed a retrospective cohort study from September 2008 to November 2017 at a single large urban academic referral center of all patients self-referred to the emergency department and admitted to either the cardiology or general medicine service with a principal diagnosis of HF, who self-identified as white, black, or Latinx. We used multivariable generalized estimating equation models to assess the relationship between race and admission to the cardiology service. We used Cox regression to assess the association between race, admission service, and 30-day readmission and mortality. Results: Among 1967 unique patients (66.7% white, 23.6% black, and 9.7% Latinx), black and Latinx patients had lower rates of admission to the cardiology service than white patients (adjusted rate ratio, 0.91; 95% CI, 0.84–0.98, for black; adjusted rate ratio, 0.83; 95% CI, 0.72–0.97 for Latinx). Female sex and age >75 years were also independently associated with lower rates of admission to the cardiology service. Admission to the cardiology service was independently associated with decreased readmission within 30 days, independent of race. Conclusions: Black and Latinx patients were less likely to be admitted to cardiology for HF care. This inequity may, in part, drive racial inequities in HF outcomes.
Antarctic subice environments are diverse, underexplored microbial habitats. Here, we describe the ecophysiology and annotated genome of a Marinobacter strain isolated from a cold, saline, iron-rich subglacial outflow of the Taylor Glacier, Antarctica. This strain (BF04_CF4) grows fastest at neutral pH (range 6-10), is psychrophilic (range: 0°C-20°C), moderately halophilic (range: 0.8%-15% NaCl) and hosts genes encoding potential low temperature and high salt adaptations. The predicted proteome suggests it utilizes fewer charged amino acids than a mesophilic Marinobacter strain. BF04_CF4 has increased concentrations of membrane unsaturated fatty acids including palmitoleic (33%) and oleic (27.5%) acids that may help maintain cell membrane fluidity at low temperatures. The genome encodes proteins for compatible solute biosynthesis and transport, which are known to be important for growth in saline environments. Physiological verification of predicted metabolic functions demonstrate BF04_CF4 is capable of denitrification and may facilitate iron oxidation. Our data indicate that strain BF04_CF4 represents a new Marinobacter species, Marinobacter gelidimuriae sp. nov., that appears well suited for the subglacial environment it was isolated from. Marinobacter species have been isolated from other cold, saline environments in the McMurdo Dry Valleys and permanently cold environments globally suggesting that this lineage is cosmopolitan and ecologically relevant in icy brines.
The anteroposterior (AP) portable chest radiograph is routinely performed to evaluate cardiopulmonary status, however heart size can be misrepresented by inherent technical factors. Our aim was to determine diagnostic accuracy of cardiothoracic ratio (CTR) on AP chest radiographs relative to echocardiography, as well as relative to axial computed tomography (CT) and frontal CT scout images in predicting cardiac chamber enlargement. 200 subjects with both chest CT and AP chest radiograph within 1 month were retrospectively identified. Patients with pericardial effusion or obscured heart borders were excluded. 130 of these subjects had also undergone echocardiography. Transverse diameters of the heart and thorax were used to calculate CTRs on AP chest radiograph, scout CT, and axial CT images. A second reader was used to verify measurement accuracy and reproducibility. Statistical analysis of CTRs for AP chest radiograph, CT scout, and axial CT images were calculated using echocardiography as gold standard. AP chest radiographs had higher CTR values than axial and scout CT images (by 0.075, p < 0.001), larger measured heart diameters by approximately 3 cm (p < 0.001), and larger thoracic diameters by approximately 2 cm (p < 0.001). CTRs on AP chest radiographs calculated with a cutoff of 0.50 had sensitivity of 86% and specificity of 32%. Sensitivity and specificity were 61% and 66% respectively when using a cutoff of 0.55, and 34% and 92% respectively when using a cutoff of 0.60. A CTR of 60% is more appropriate than 50-55% when evaluating an AP chest radiograph for cardiac chamber enlargement due to its much higher specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.