Multiple cave populations of the teleost have repeatedly reduced or lost eye and body pigmentation during adaptation to dark caves. Albinism, the complete absence of melanin pigmentation, is controlled by loss-of-function mutations in the gene. The mutation is accompanied by an increase in the melanin synthesis precursor l-tyrosine, which is also a precursor for catecholamine synthesis. In this study, we show a relationship between pigmentation loss, enhanced catecholamine synthesis and responsiveness to anaesthesia, determined as a proxy for catecholamine-related behaviours. We demonstrate that anaesthesia resistance (AR) is enhanced in multiple depigmented and albino cavefish (CF), inversely proportional to the degree of pigmentation loss, controlled by the gene, and can be modulated by experimental manipulations of l-tyrosine or the catecholamine norepinephrine (NE). Moreover, NE is increased in the brains of multiple albino and depigmented CF relative to surface fish. The results provide new insights into the evolution of pigment modification because NE controls a suite of adaptive behaviours similar to AR that may represent a target of natural selection. Thus, understanding the relationship between loss of pigmentation and AR may provide insight into the role of natural selection in the evolution of albinism via a melanin-catecholamine trade-off.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.