BACKGROUND Effective medical therapies are lacking for the treatment of neurofibromatosis type 1– related plexiform neurofibromas, which are characterized by elevated RAS–mitogen-activated protein kinase (MAPK) signaling. METHODS We conducted a phase 1 trial of selumetinib (AZD6244 or ARRY-142886), an oral selective inhibitor of MAPK kinase (MEK) 1 and 2, in children who had neurofibromatosis type 1 and inoperable plexiform neurofibromas to determine the maximum tolerated dose and to evaluate plasma pharmacokinetics. Selumetinib was administered twice daily at a dose of 20 to 30 mg per square meter of body-surface area on a continuous dosing schedule (in 28-day cycles). We also tested selumetinib using a mouse model of neurofibromatosis type 1–related neurofibroma. Response to treatment (i.e., an increase or decrease from baseline in the volume of plexiform neurofibromas) was monitored by using volumetric magnetic resonance imaging analysis to measure the change in size of the plexiform neurofibroma. RESULTS A total of 24 children (median age, 10.9 years; range, 3.0 to 18.5) with a median tumor volume of 1205 ml (range, 29 to 8744) received selumetinib. Patients were able to receive selumetinib on a long-term basis; the median number of cycles was 30 (range, 6 to 56). The maximum tolerated dose was 25 mg per square meter (approximately 60% of the recommended adult dose). The most common toxic effects associated with selumetinib included acneiform rash, gastrointestinal effects, and asymptomatic creatine kinase elevation. The results of pharmacokinetic evaluations of selumetinib among the children in this trial were similar to those published for adults. Treatment with selumetinib resulted in confirmed partial responses (tumor volume decreases from baseline of ≥20%) in 17 of the 24 children (71%) and decreases from baseline in neurofibroma volume in 12 of 18 mice (67%). Disease progression (tumor volume increase from baseline of ≥20%) has not been observed to date. Anecdotal evidence of decreases in tumor-related pain, disfigurement, and functional impairment was observed. CONCLUSIONS Our early-phase data suggested that children with neurofibromatosis type 1 and inoperable plexiform neurofibromas benefited from long-term dose-adjusted treatment with selumetinib without having excess toxic effects. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT01362803.)
The origin of cells that contribute to tendon healing, specifically extrinsic epitenon/paratenon cells vs. internal tendon fibroblasts, is still debated. The purpose of this study is to determine the location and phenotype of cells that contribute to healing of a central patellar tendon defect injury in the mouse. Normal adult patellar tendon consists of scleraxis-expressing (Scx) tendon fibroblasts situated among aligned collagen fibrils. The tendon body is surrounded by paratenon, which consists of a thin layer of cells that do not express Scx and collagen fibers oriented circumferentially around the tendon. At 3 days following injury, the paratenon thickens as cells within the paratenon proliferate and begin producing tenascin-C and fibromodulin. These cells migrate toward the defect site and express scleraxis and smooth muscle actin alpha by day 7. The thickened paratenon tissue eventually bridges the tendon defect by day 14. Similarly, cells within the periphery of the adjacent tendon struts express these markers and become disorganized. Cells within the defect region show increased expression of fibrillar collagens (Col1a1 and Col3a1) but decreased expression of tenogenic transcription factors (scleraxis and mohawk homeobox) and collagen assembly genes (fibromodulin and decorin). By contrast, early growth response 1 and 2 are upregulated in these tissues along with tenascin-C. These results suggest that paratenon cells, which normally do not express Scx, respond to injury by turning on Scx and assembling matrix to bridge the defect. Future studies are needed to determine the signaling pathways that drive these cells and whether they are capable of producing a functional tendon matrix. Understanding this process may guide tissue engineering strategies in the future by stimulating these cells to improve tendon repair.
The sequence of events that leads to the formation of a functionally graded enthesis is not clearly defined. The current study demonstrates that clonal expansion of Gdf5 progenitors contributes to linear growth of the enthesis. Prior to mineralization, Col1+ cells in the enthesis appose Col2+ cells of the underlying primary cartilage. At the onset of enthesis mineralization, cells at the base of the enthesis express alkaline phosphatase, Indian hedgehog, and ColX as they mineralize. The mineralization front then extends towards the tendon midsubstance as cells above the front become encapsulated in mineralized fibrocartilage over time. The hedgehog (Hh) pathway regulates this process, as Hh-responsive Gli1+ cells within the developing enthesis mature from unmineralized to mineralized fibrochondrocytes in response to activated signaling. Hh signaling is required for mineralization, as tissue-specific deletion of its obligate transducer Smoothened in the developing tendon and enthesis cells leads to significant reductions in the apposition of mineralized fibrocartilage. Together, these findings provide a spatiotemporal map of events – from expansion of the embryonic progenitor pool to synthesis of the collagen template and finally mineralization of this template – that leads to the formation of the mature zonal enthesis. These results can inform future tendon-to-bone repair strategies to create a mechanically functional enthesis in which tendon collagen fibers are anchored to bone through mineralized fibrocartilage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.