Ferumoxides, dextran-coated superparamagnetic iron oxide (SPIO) particles, form ferumoxide-transfection agent (FE-TA) complexes that are internalized into endosomes/lysosomes and have been used to label cells for in vivo MRI tracking and localization studies. A better understanding of the physical state of the FE-TA complexes during endocytosis could improve their use. The purpose of this study was to measure the rate of the degradation of iron particles under varying physiological conditions. FE-TA complexes were incubated in seven different buffers containing different chelates with different pH. Reducible iron concentrations, T2 relaxation rates and gradient echo (GRE) magnetic resonance images (MRI) were obtained from each condition immediately after incubation and at 6, 24, 48, 72 and 96 h and days 7, 14 and 21. The dynamics of FE-TA in the endosome/lysosomes within the cells were visualized with electron microscopy. Sodium citrate buffer at pH 4.5 rapidly dissolved FE-TA complexes. However, FE-TA complexes were less soluble in the same buffer at pH 5.5. Similarly, FE-TA complexes were not readily soluble in any of the other buffers with or without chelates, regardless of pH. Electron microscopic images showed degraded FE-TA in some intracellular endosome/lysosomes between days 3 and 5. In the cellular environment, some of the FE-TA-containing endosomes were found to fuse with lysosomes, causing rapid dissociation at low pH and exposing the iron core to chelates that resulted in soluble Fe(III) within the lysosomes. The studies presented represent a first step in identifying the important cellular environmental parameters affecting the integrity of FE-TA complexes.
Targeted delivery of intravenously administered genetically altered cells or stem cells is still in an early stage of investigation. We developed a method of delivering iron oxide (ferumoxide)-labeled mesenchymal stem cells (MSCs) to a targeted area in an animal model by applying an external magnet. Rats with or without an external magnet placed over the liver were injected intravenously with ferumoxide-labeled MSCs and magnetic resonance imaging (MRI) signal intensity (SI) changes, iron concentration, and concentration of MSCs in the liver were monitored at different time points. SI decreased in the liver after injection of MSCs and returned gradually to that of control rat livers at approximately day 29. SI decreases were greater in rats with external magnets. Higher iron concentration and increased labeled cell numbers were detected in rat livers with external magnets. The external magnets influenced the movement of labeled MSCs such that the cells were retained in the region of interest. These results potentially open a new area of investigation for delivering stem cells or genetically altered cells.
By complexing ferumoxides or superparamagnetic iron oxide (SPIO) to transfection agents (TAs), it is possible to magnetically label mammalian cells. There has been no systematic study comparing TAs complexed to SPIO as far as cell labeling efficiency and viability. This study investigates the toxicity and labeling efficiency at various doses of FEs complexed to different TAs in mammalian cells. Different classes of TAs were used, such as polycationic amines, dendrimers, and lipid-based agents. Cellular toxicity was measured using doses of TAs from 1 to 50 microg/mL in incubation media. Iron incorporation efficiency was measured by combining various amounts of FEs and different doses of TAs. Lipofectamine2000 showed toxicity at lowest dose (1 microg/mL), whereas FuGENE6 and low molecular weight poly-L-lysine (PLL) showed the least toxicity. SPIO labeling efficiency was similar with high-molecular-weight PLL (388.1 kDa) and superfect, whereas FuGENE6 and low-molecular-weight PLL were inefficient in labeling cells. Concentrations of 25 to 50 microg/mL of FEs complexed to TAs in media resulted in sufficient endocytosis of the SPIO into endosomes to detect cells on cellular magnetic resonance imaging.
By complexing ferumoxides or superparamagnetic iron oxide (SPIO) to transfection agents (TAs), it is possible to magnetically label mammalian cells. There has been no systematic study comparing TAs complexed to SPIO as far as cell labeling efficiency and viability. This study investigates the toxicity and labeling efficiency at various doses of FEs complexed to different TAs in mammalian cells. Different classes of TAs were used, such as polycationic amines, dendrimers, and lipid-based agents. Cellular toxicity was measured using doses of TAs from 1 to 50 Mg/mL in incubation media. Iron incorporation efficiency was measured by combining various amounts of FEs and different doses of TAs. Lipofectamine2000 showed toxicity at lowest dose (1 Mg/mL), whereas FuGENE6 and low molecular weight poly-L-lysine (PLL) showed the least toxicity. SPIO labeling efficiency was similar with high-molecularweight PLL (388.1 kDa) and superfect, whereas FuGENE6 and low-molecular-weight PLL were inefficient in labeling cells. Concentrations of 25 to 50 Mg/mL of FEs complexed to TAs in media resulted in sufficient endocytosis of the SPIO into endosomes to detect cells on cellular magnetic resonance imaging. Mol Imaging (2004) 3, 24-32.
Results indicate that infusing cells that are magnetically labeled with ferumoxides-PLL complex into rats does not alter biochemical or hematologic measures of organ function in a clinically relevant or preclusive manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.