Spatial navigation requires memory representations of landmarks and other navigation cues. The retrosplenial cortex (RSC) is anatomically positioned between limbic areas important for memory formation, such as the hippocampus (HPC) and the anterior thalamus, and cortical regions along the dorsal stream known to contribute importantly to long-term spatial representation, such as the posterior parietal cortex. Damage to the RSC severely impairs allocentric representations of the environment, including the ability to derive navigational information from landmarks. The specific deficits seen in tests of human and rodent navigation suggest that the RSC supports allocentric representation by processing the stable features of the environment and the spatial relationships among them. In addition to spatial cognition, the RSC plays a key role in contextual and episodic memory. The RSC also contributes importantly to the acquisition and consolidation of long-term spatial and contextual memory through its interactions with the HPC. Within this framework, the RSC plays a dual role as part of the feedforward network providing sensory and mnemonic input to the HPC and as a target of the hippocampal-dependent systems consolidation of long-term memory.
The retrosplenial cortex (RSC) plays an important role in memory and spatial navigation. It shares functional similarities with the hippocampus, including the presence of place fields and lesion-induced impairments in spatial navigation, and the RSC is an important source of visual-spatial input to the hippocampus. Recently, the RSC has been the target of intense scrutiny among investigators of human memory and navigation. fMRI and lesion data suggest an RSC role in the ability to use landmarks to navigate to goal locations. However, no direct neurophysiological evidence of encoding navigational cues has been reported so the specific RSC contribution to spatial cognition has been uncertain. To examine this, we trained rats on a T-maze task in which the reward location was explicitly cued by a flashing light and we recorded RSC neurons as the rats learned. We found that RSC neurons rapidly encoded the light cue. Additionally, RSC neurons encoded the reward and its location, and they showed distinct firing patterns along the left and right trajectories to the goal. These responses may provide key information for goal-directed navigation, and the loss of these signals may underlie navigational impairments in subjects with RSC damage.
Whether estrogen replacement is beneficial to cognitive health is controversial. Some studies have shown that estrogen replacement therapy (ERT) relieves memory impairment associated with menopause in women, whereas others suggest that estrogen not only is incapable of providing a benefit, but actually can be detrimental. One possible explanation for this discrepancy in study findings could be the varying time after menopause at which ERT is initiated. It has been proposed that a critical period exists during which ERT must be administered to enhance cognitive function. This idea has yet to be tested directly using functional synaptic studies, however. Here we investigated whether prolonged hormone deprivation caused by ovariectomy (OVX) in young adult rats prevents the ability of estrogen replacement to increase synaptic function in the hippocampus to a degree necessary for estrogen-induced improvement in learning and memory. Remarkably, estrogen replacement was found to increase long-term potentiation, the current mediated by NR2B-containing NMDA receptors, and the dendritic spine density at CA3-CA1 synapses up to 15 months post-OVX. However, by 19 months post-OVX, the same estrogen replacement was unable to induce these changes. Importantly, this loss of estrogen's effectiveness was seen to be a consequence of the duration of deprivation. In female rats aged with their ovaries intact and examined at the same chronological age as the 19-month post-OVX group, estrogen replacement significantly increased synaptic function and spine density. These data clearly demonstrate that a critical period exists during which ERT must be administered, and that once this period passes, the beneficial effects are lost.C ognitive function fluctuates across the menstrual cycle in women, with increased learning occurring when plasma estrogen levels are highest (1, 2). As such, loss of endogenous estrogen production after menopause, a consequence of normal aging, has been correlated with cognitive deficits (3). Treatment with estrogen replacement therapy (ERT) is not always successful in alleviating this hormone-related cognitive decline (4, 5). This lack of benefit of ERT may be explained by the critical period hypothesis, which proposes that there is a critical period after reproductive senescence during which estrogen is capable of increasing hippocampal function to a sufficient degree to enhance memory processing. After this period, ERT might be ineffective and possibly even detrimental (6, 7).Hippocampal learning is increased during proestrus in cycling rats, and this effect can be mimicked in young adult ovariectomized (OVX) rats treated with the ovarian estrogen 17β-estradiol (E2) (8-11). Similar to women, rats that experience long-term ovarian hormone deprivation no longer benefit from E2's effects on enhancing hippocampal learning (12-15). The role of ovarian hormone senescence in the effectiveness of E2 replacement in enhancing learning is difficult to distinguish from normal aging processes, given that aging alone is kn...
17β-estradiol (E2), at high circulating levels, enhances learning and memory in many women, making it a clinical treatment for hormone-related cognitive decline in aging. However, the mechanisms stimulated by E2, which are responsible for its cognitive enhancing effects, remain incompletely defined. Using an ovariectomized rat model, we previously reported that increasing plasma E2 enhances the magnitude of long-term potentiation (LTP) at hippocampal CA3-CA1 synapses, which is caused by a selective increase in current mediated by NR2B-containing NMDARs causing an increase in the NMDAR/AMPAR ratio. Whether the increase in NR2B current is causally related to the ability of E2 to enhance hippocampal dependent learning and memory has yet to be tested. Here, we find that E2 enhances performance in the novel object recognition (NOR) task with the same time course we previously showed E2 enhances the LTP magnitude, temporally linking the increase in LTP to enhanced learning and memory. Furthermore, using the selective NR2B subunit antagonist Ro25-6981, we find that the E2-enhanced NOR, like the enhanced LTP, requires hippocampal NR2B-containing NMDARs, specifically in area CA1. Finally, using whole-cell recordings and the phosphatase inhibitor orthovanadate, we investigated whether the E2-induced increase in NMDAR current is caused by an increase in the density of synaptic NMDARs and/or an increase in NMDAR subunit phosphorylation. We find that both mechanisms are responsible for the enhanced NMDAR current in E2-treated rats. Our results show that the E2-enhanced NOR requires a functional increase in NR2B-containing NMDARs, a requirement shared with the E2-enhanced LTP magnitude at CA3-CA1 synapses, supporting the hypothesis that the increase in LTP likely contributes to the enhanced learning and memory following an increase in plasma E2 levels.
Summary When circulating estrogen levels decline as a natural consequence of menopause and aging in women, there is an increased incidence of deficits in working memory. In many cases, these deficits are rescued by estrogen replacement therapy. These clinical data therefore highlight the importance of defining the biological pathways linking estrogen to the cellular substrates of learning and memory. It has been known for nearly two decades that estrogen enhances dendritic spine density on apical dendrites of CA1 pyramidal cells in hippocampus, a brain region required for learning. Interestingly, at synapses between CA3-CA1 pyramidal cells, estrogen has also been shown to enhance synaptic NMDA receptor current and the magnitude of long term potentiation, a cellular correlate of learning and memory. Given that synapse density, NMDAR function, and long term potentiation at CA3-CA1 synapses in hippocampus are associated with normal learning, it is likely that modulation of these parameters by estrogen facilitates the improvement in learning observed in rats, primates and humans following estrogen replacement. To facilitate the design of clinical strategies to potentially prevent or reverse the age-related decline in learning and memory during menopause, the relationship between the estrogen-induced morphological and functional changes in hippocampus must be defined and the role these changes play in facilitating learning must be elucidated. The aim of this report is to provide a summary of the proposed mechanisms by which this hormone increases synaptic function and in doing so, it briefly addresses potential mechanisms contributing to the estrogen-induced increase in synaptic morphology and plasticity, as well as important future directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.