Most therapies under development to restore motor function after spinal cord injury (SCI) assume intact brain motor functions. To examine this assumption, 12 patients with chronic, complete SCI and 12 controls underwent functional MRI during attempted, and during imagined, right foot movement, each at two force levels. In patients with SCI, many features of normal motor system function were preserved, however, several departures from normal were apparent: (i) volume of activation was generally much reduced, e.g. 4-8% of normal in primary sensorimotor cortex, in the setting of twice normal variance in signal change; (ii) abnormal activation patterns were present, e.g. increased pallido-thalamocortical loop activity during attempted movement and abnormal processing in primary sensorimotor cortex during imagined movement; and (iii) modulation of function with change in task or in force level did not conform to patterns seen in controls, e.g. in controls, attempted movement activated more than imagined movement did within left primary sensorimotor cortex and right dorsal cerebellum, while imagined movement activated more than attempted movement did in dorsolateral prefrontal cortex and right precentral gyrus. These modulations were absent in patients with SCI. Many features of brain motor system function during foot movement persist after chronic complete SCI. However, substantial derangements of brain activation, poor modulation of function with change in task demands and emergence of pathological brain events were present in patients. Because brain function is central to voluntary movement, interventions that aim to improve motor function after chronic SCI likely also need to attend to these abnormalities of brain function.
Cerebral control of foot movements has received limited study. Functional MRI compared slow with rapid foot movement, and right (dominant) with left foot movement. Brain activation during right, as compared with left, foot movement was larger, with higher amplitude task-related motor cortex signal change, and higher laterality index. Brain activation during fast, as compared with slow, foot movement was larger in cortical and cerebellar areas but smaller in deep gray areas. Some principles of cerebral control of hand movement extend to foot, but exceptions found include that dominant foot movement showed greater activation than did nondominant, and faster foot movements activated bilateral deep gray matter structures less than did slower. Results might have utility in trials of restorative therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.