To perform quantitative live cell imaging, investigators require fluorescent reporters that accurately report protein localization and levels, while minimally perturbing the cell. Yet, within the biochemically distinct environments of cellular organelles, popular fluorescent proteins (FPs), including EGFP, can be unreliable for quantitative imaging, resulting in underestimation of protein levels and incorrect localization. Specifically, within the secretory pathway, significant populations of FPs misfold and fail to fluoresce due to non-native disulphide bond formation. Furthermore, transmembrane FP fusion constructs can disrupt organelle architecture due to oligomerizing tendencies of numerous common FPs. Here, we describe a powerful set of bright and inert FPs optimized for use in multiple cellular compartments, especially oxidizing environments and biological membranes. Also, we provide new insights into use of red FPs in the secretory pathway. Our monomeric "oxFPs" finally resolve long standing, underappreciated, and important problems of cell biology and should be useful for a number of applications.
Several fluorescent proteins (FPs) are prone to forming low affinity oligomers. This undesirable tendency is exacerbated when FPs are confined to membranes or when fused to naturally oligomeric proteins. Oligomerization of FPs limits their suitability for creating fusions with proteins of interest. Unfortunately, no standardized method evaluates the biologically relevant oligomeric state of FPs. Here, we describe a quantitative visual assay for assessing whether FPs are sufficiently monomeric under physiologic conditions. Membrane-associated FP-fusion proteins, by virtue of their constrained planar geometry achieve high effective concentrations. We exploited this propensity to develop an assay to measure FP tendencies to oligomerize in cells. FPs were fused on the cytoplasmic end of an endoplasmic reticulum (ER) signal anchor membrane protein (CytERM) and expressed in cells. Cells were scored based on the ability of CytERM to homo-oligomerize with proteins on apposing membranes and restructure the ER from a tubular network into organized smooth ER (OSER) whorl structures. The ratio of nuclear envelope and OSER structures mean fluorescent intensities for cells expressing EGFP or mGFP CytERM established standards for comparison of uncharacterized FPs. We tested three FPs and identified two as sufficiently monomeric while a third previously reported as monomeric was found to strongly oligomerize.
The ability to study proteins in live cells using genetically encoded fluorescent proteins (FPs) has revolutionized cell biology (1-3). Researchers have created numerous FP biosensors and optimized FPs for specific organisms and subcellular environments in a rainbow of colors (4,5). However, expressing FPs in oxidizing environments such as the eukaryotic endoplasmic reticulum (ER) or the bacterial periplasm can impair folding, thereby preventing fluorescence (6,7). A substantial fraction of enhanced green fluorescent protein (EGFP) oligomerizes to form non-fluorescent mixed disulfides in the ER (6) and EGFP does not fluoresce in the periplasm when targeted via the SecYEG translocon (7). To overcome these obstacles, we exploited the highly efficient folding capability of superfolder GFP (sfGFP) (8). Here, we report sfGFP does not form disulfide-linked oligomers in the ER and maltosebinding protein (MBP) signal sequence (peri)-sfGFP (9) is brightly fluorescent in the periplasm of Escherichia coli. Thus, sfGFP represents an important research tool for studying resident proteins of oxidizing environments.
Extracellular vesicles (EVs) or exosomes have been implicated in the pathophysiology of infections and cancer. The negative regulatory factor (Nef) encoded by simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) plays a critical role in the progression to AIDS and impairs endosomal trafficking. Whether HIV-1 Nef can be loaded into EVs has been the subject of controversy, and nothing is known about the connection between SIV Nef and EVs. We find that both SIV and HIV-1 Nef proteins are present in affinity-purified EVs derived from cultured cells, as well as in EVs from SIV-infected macaques. Nef-positive EVs were functional, i.e., capable of membrane fusion and depositing their content into recipient cells. The EVs were able to transfer Nef into recipient cells. This suggests that Nef readily enters the exosome biogenesis pathway, whereas HIV virions are assembled at the plasma membrane. It suggests a novel mechanism by which lentiviruses can influence uninfected and uninfectable, i.e., CD4-negative, cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.