IntroductionThe purpose of this work was to study the prognostic influence in breast cancer of thioredoxin reductase 1 (TXNRD1) and thioredoxin interacting protein (TXNIP), key players in oxidative stress control that are currently evaluated as possible therapeutic targets.MethodsAnalysis of the association of TXNRD1 and TXNIP RNA expression with the metastasis-free interval (MFI) was performed in 788 patients with node-negative breast cancer, consisting of three individual cohorts (Mainz, Rotterdam and Transbig). Correlation with metagenes and conventional clinical parameters (age, pT stage, grading, hormone and ERBB2 status) was explored. MCF-7 cells with a doxycycline-inducible expression of an oncogenic ERBB2 were used to investigate the influence of ERBB2 on TXNRD1 and TXNIP transcription.ResultsTXNRD1 was associated with worse MFI in the combined cohort (hazard ratio = 1.955; P < 0.001) as well as in all three individual cohorts. In contrast, TXNIP was associated with better prognosis (hazard ratio = 0.642; P < 0.001) and similar results were obtained in all three subcohorts. Interestingly, patients with ERBB2-status-positive tumors expressed higher levels of TXNRD1. Induction of ERBB2 in MCF-7 cells caused not only an immediate increase in TXNRD1 but also a strong decrease in TXNIP. A subsequent upregulation of TXNIP as cells undergo senescence was accompanied by a strong increase in levels of reactive oxygen species.ConclusionsTXNRD1 and TXNIP are associated with prognosis in breast cancer, and ERBB2 seems to be one of the factors shifting balances of both factors of the redox control system in a prognostic unfavorable manner.
Background: Real-time reverse transcriptase quantitative polymerase chain reaction (real-time RTqPCR) is the most accurate measure of gene expression in biological systems. The comparison of different samples requires the transformation of data through a process called normalisation. Reference or housekeeping genes are candidate genes which are selected on the basis of constitutive expression across samples, and allow the quantification of changes in gene expression. At present, no reference gene has been identified for any organism which is universally optimal for use across different tissue types or disease situations. We used microarray data to identify new reference genes generated from total RNA isolated from normal and osteoarthritic canine articular tissues (bone, ligament, cartilage, synovium and fat). RTqPCR assays were designed and applied to each different articular tissue. Reference gene expression stability and ranking was compared using three different mathematical algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.