B-1 cells are important players in the first line of defense against pathogens. According to current models for the origin of B-1 cells, they either represent a separate lineage from conventional B-2 cells or differentiate from conventional B-2 cells via an intermediate, B-1(int), in response to positive selection by antigen. Here we show that Btk, a Tec family kinase that mediates B cell antigen receptor (BCR) signaling, is required at multiple stages of B-1 cell development. VH12 anti-phosphatidylcholine (PtC) IgH transgenic mice provide a model for the induced differentiation of B-1 cells. This transgene selects for PtC-reactive cells and induces them to adopt a B-1 phenotype. Both processes have been shown to depend on Btk. To determine whether this is secondary to a requirement for Btk in the development of mature B-2 cells, we crossed VH12 transgenic mice to mice expressing low levels of Btk. B-2 cell development occurs normally in Btk(lo) mice despite reduced responsiveness to BCR crosslinking. Analysis of VH12.Btk(lo) mice reveals that Btk regulates the B-1(int) to B-1 transition and/or the survival of splenic B-1 cells, in part via a mechanism independent of its role in BCR signaling. We also show that Btk mediates the survival of, and expression of IL-10 by, those B-1 cells that do develop and migrate to the peritoneum. Multiple roles for Btk in B-1 cell development and maintenance may explain the particular sensitivity of this population to mutations in components of Btk signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.