Older adults commonly report difficulty understanding speech, particularly in adverse listening environments. These communication difficulties may exist in the absence of peripheral hearing loss. Older adults, both with normal hearing and with hearing loss, demonstrate temporal processing deficits that affect speech perception. The purpose of the present study is to investigate aging, cognition, and neural processing factors that may lead to deficits on perceptual tasks that rely on phoneme identification based on a temporal cue – vowel duration. A better understanding of the neural and cognitive impairments underlying temporal processing deficits could lead to more focused aural rehabilitation for improved speech understanding for older adults. This investigation was conducted in younger (YNH) and older normal-hearing (ONH) participants who completed three measures of cognitive functioning known to decline with age: working memory, processing speed, and inhibitory control. To evaluate perceptual and neural processing of auditory temporal contrasts, identification functions for the contrasting word-pair WHEAT and WEED were obtained on a nine-step continuum of vowel duration, and frequency-following responses (FFRs) and cortical auditory-evoked potentials (CAEPs) were recorded to the two endpoints of the continuum. Multiple linear regression analyses were conducted to determine the cognitive, peripheral, and/or central mechanisms that may contribute to perceptual performance. YNH participants demonstrated higher cognitive functioning on all three measures compared to ONH participants. The slope of the identification function was steeper in YNH than in ONH participants, suggesting a clearer distinction between the contrasting words in the YNH participants. FFRs revealed better response waveform morphology and more robust phase-locking in YNH compared to ONH participants. ONH participants also exhibited earlier latencies for CAEP components compared to the YNH participants. Linear regression analyses revealed that cortical processing significantly contributed to the variance in perceptual performance in the WHEAT/WEED identification functions. These results suggest that reduced neural precision contributes to age-related speech perception difficulties that arise from temporal processing deficits.
Purpose Degraded temporal processing associated with aging may be a contributing factor to older adults' hearing difficulties, especially in adverse listening environments. This degraded processing may affect the ability to distinguish between words based on temporal duration cues. The current study investigates the effects of aging and hearing loss on cortical and subcortical representation of temporal speech components and on the perception of silent interval duration cues in speech. Method Identification functions for the words DISH and DITCH were obtained on a 7-step continuum of silence duration (0–60 ms) prior to the final fricative in participants who are younger with normal hearing (YNH), older with normal hearing (ONH), and older with hearing impairment (OHI). Frequency-following responses and cortical auditory-evoked potentials were recorded to the 2 end points of the continuum. Auditory brainstem responses to clicks were obtained to verify neural integrity and to compare group differences in auditory nerve function. A multiple linear regression analysis was conducted to determine the peripheral or central factors that contributed to perceptual performance. Results ONH and OHI participants required longer silence durations to identify DITCH than did YNH participants. Frequency-following responses showed reduced phase locking and poorer morphology, and cortical auditory-evoked potentials showed prolonged latencies in ONH and OHI participants compared with YNH participants. No group differences were noted for auditory brainstem response Wave I amplitude or Wave V/I ratio. After accounting for the possible effects of hearing loss, linear regression analysis revealed that both midbrain and cortical processing contributed to the variance in the DISH–DITCH perceptual identification functions. Conclusions These results suggest that age-related deficits in the ability to encode silence duration cues may be a contributing factor in degraded speech perception. In particular, degraded response morphology relates to performance on perceptual tasks based on silence duration contrasts between words.
Adults with all levels of hearing loss have faced financial and accessibility constraints in obtaining prescription hearing aids. To increase access to hearing aids, the Food and Drug Administration (FDA) has created a new designation of over-the-counter (OTC) hearing aids for adults with perceived mild to moderate hearing loss. The goal of this article is to describe the incorporation of OTC hearing aid users into established audiology services. A proposed workflow was created by otolaryngologists and audiologists at Johns Hopkins University School of Medicine and is being implemented at outpatient audiology offices. We used published criteria for appropriate OTC hearing aid usage and disqualifying criteria hearing specialists should be aware of. The proposed workflow describes the multiple entry points for OTC hearing aid users seeking access to care and appropriate objectives for these visits. The new FDA ruling has increased the accessibility of hearing assistance devices; however, the varying degrees of retailer support systems could lead to improper fitting and other technical problems for some patients trialing new hearing aids. Our proposed workflow aims to describe the incorporation of established hearing assistance services with the new OTC hearing aid market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.