Phenotypic and transcriptional profiling of Treg cells at homeostasis reveals that TCR activation promotes Treg cells with an effector phenotype (eTreg) characterized by the production of IL-10 and expression of the inhibitory receptor PD-1. At homeostasis, blockade of the PD-1 pathway results in enhanced eTreg cell activity while during infection with T. gondii early IFN-γ upregulates myeloid cell expression of PD-L1 associated with reduced Treg cell populations. In infected mice, the blockade of PD-L1, complete deletion of PD-1, or lineage-specific deletion of PD-1 in Treg cells prevents loss of eTreg cells. These interventions resulted in a reduced ratio of pathogen-specific effector T cells : eTregs and increased levels of IL-10 that mitigated the development of immunopathology, but which could compromise parasite control. Thus, eTreg cell expression of PD-1 acts as a sensor to rapidly tune the pool of eTreg cells at homeostasis and during inflammatory processes.
Successful infection strategies must balance pathogen amplification and persistence. In Toxoplasma gondii, this is accomplished through differentiation into dedicated cyst-forming chronic stages that avoid clearance by the host immune system. The transcription factor BFD1 is both necessary and sufficient for stage conversion; however, its regulation is not understood. We examine five factors transcriptionally activated by BFD1. One of these is a cytosolic RNA-binding protein of the CCCH-type zinc finger family, which we name BFD2. Parasites lacking BFD2 fail to induce BFD1 and are consequently unable to fully differentiate in culture or in mice. BFD2 interacts with the BFD1 transcript in a stress-dependent manner. Deletion of BFD2 reduces BFD1 protein levels, but not mRNA abundance. The reciprocal effects on BFD2 transcription and BFD1 translation outline a positive feedback loop that enforces commitment to differentiation. BFD2 helps explain how parasites commit to the chronic gene-expression program and elucidates how the balance between proliferation and persistence is achieved over the course of infection.
Immunotherapy checkpoint inhibitors, such as antibodies targeting PD-1 and CTLA-4, have demonstrated the potential of harnessing the immune system to treat cancer. However, despite encouraging results particularly with respect to survival, only a minority of patients benefit from these therapies. In clinical studies aimed at understanding changes in the immune system following immunotherapy treatment, ICOS (Inducible T cell CO-Stimulator) was shown to be significantly up-regulated on CD4+ T cells and this was associated with clinical activity, indicating that ICOS stimulatory activity may be beneficial in the treatment of solid tumors. In this report, we describe the generation of specific, species cross-reactive, agonist antibodies to ICOS, including the humanized clinical candidate, JTX-2011 (vopratelimab). Preclinical studies suggest that the ICOS stimulating antibodies require Fc receptor cross-linking for optimal agonistic activity. Notably, the ICOS antibodies do not exhibit superagonist properties but rather require T cell receptor (TCR)-mediated upregulation of ICOS for agonist activity. Treatment with the ICOS antibodies results in robust anti-tumor benefit and long-term protection in preclinical syngeneic mouse tumor models. Additional benefit is observed when the ICOS antibodies are administered in combination with anti-PD-1 and anti-CTLA-4 therapies. Based on the preclinical data, JTX-2011 is currently being developed in the clinical setting for the treatment of solid tumors.
In the peritoneal cavity, the omentum contains fat-associated lymphoid clusters (FALCs) whose role in response to infection is poorly understood. After intraperitoneal immunization with Toxoplasma gondii , conventional type 1 dendritic cells (cDC1s) were critical to induce innate sources of IFN-γ and cellular changes in the FALCs. Unexpectedly, infected peritoneal macrophages that migrated into the FALCs primed CD8 + T cells. Although T cell priming was cDC1 independent, these DCs were required for maximal CD8 + T cell expansion. An agent-based computational model and experimental data highlighted that cDC1s affected the magnitude of the proliferative burst and promoted CD8 + T cell expression of nutrient uptake receptors and cell survival. Thus, although FALCs lack the organization of secondary lymphoid organs, cDC1s resident in this tissue coordinate innate responses to microbial challenge and provide secondary signals required for T cell expansion and memory formation.
Successful infection strategies must balance pathogen ampli cation and persistence. In Toxoplasma gondii, this is accomplished through differentiation into dedicated cyst-forming chronic stages that avoid clearance by the host immune system. The transcription factor BFD1 is both necessary and su cient for stage conversion; however, its regulation is not understood. We examine ve factors transcriptionally activated by BFD1. One of these is a cytosolic RNA-binding protein of the CCCH-type zinc nger family, which we name BFD2. Parasites lacking BFD2 fail to induce BFD1 and are consequently unable to fully differentiate in culture or in mice. BFD2 interacts with the BFD1 transcript in a stress-dependent manner. Deletion of BFD2 reduces BFD1 protein levels, but not mRNA abundance. The reciprocal effects on BFD2 transcription and BFD1 translation outline a positive feedback loop that enforces commitment to differentiation. BFD2 helps explain how parasites commit to the chronic gene-expression program and elucidates how the balance between proliferation and persistence is achieved over the course of infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.