OBJECTIVETransplantation of insulin-producing cells placed inside microcapsules is being trialled to overcome the need for immunosuppressive therapy.RESEARCH DESIGN AND METHODSFour type 1 diabetic patients with no detectable C-peptide received an intraperitoneal infusion of islets inside microcapsules of barium alginate (mean 178,200 islet equivalents on each of eight occasions).RESULTSC-peptide was detected on day 1 post-transplantation, and blood glucose levels and insulin requirements decreased. C-peptide was undetectable by 1–4 weeks. In a multi-islet recipient, C-peptide was detected at 6 weeks after the third infusion and remains detectable at 2.5 years. Neither insulin requirements nor glycemic control was affected. Capsules recovered at 16 months were surrounded by fibrous tissue and contained necrotic islets. No major side effects or infection occurred.CONCLUSIONSWhile allografting of encapsulated human islets is safe, efficacy of the cells needs to improve for the therapy to make an impact on the clinical scene.
This study demonstrates that fetal pancreatic cells differentiate and function normally when placed within barium alginate microcapsules and transplanted.
Fetal beta-cells are immature in their responsiveness to glucose, and maturation occurs after oral feeding commences at birth. The incretin hormones glucagon-like peptide 1 (GLP-1) and cholecystokinin (CCK) are known to be released from the gut in response to oral feeding and enhance insulin secretion from pancreatic beta-cells. We hypothesized that these fetal beta-cells would mature in their glucose responsiveness if they were previously exposed to incretins. We exposed fetal pig islet-like cell clusters (ICCs) to 100 nM GLP-1, 5 micro M CCK, or 10 mM nicotinamide (NIC; a positive control) for 6 h and demonstrated 3- and 1.7-fold increases in glucose-induced insulin secretion for GLP-1 and CCK, respectively. This effect did not reach statistical significance if the ICCs were exposed to the incretins for 3 d. However, exposure for 4 d enhanced formation of beta-cells from undifferentiated cells, from 8 +/- 1% (controls) to 17 +/- 3% for GLP-1, 20 +/- 4% for CCK, and 15 +/- 1 for NIC (P < 0.001). ICCs exposed to GLP-1 for 3 d also showed a 1.9-fold increase in the intensity of PDX-1(+) cells, as assessed by semiquantitative fluorescent immunocytochemistry. Exposure of ICCs to incretins for 3 d did not show any increase in size of the islet clusters. ICCs exposed to either incretin as well as controls were transplanted into severe combined immunodeficient mice and examined at 1 and 2 months. We found a significant increase in the number of beta-cells in the GLP-1- and NIC-treated groups compared with the untreated controls or CCK. Perfusion of these grafts at 2 months showed that ICCs previously exposed to GLP-1, CCK, and NIC (but not controls), were functional and mature. In conclusion, GLP-1 and CCK have a dual effect on fetal pig ICCs, causing maturation of glucose-induced insulin secretion from beta-cells as well as enhancement of differentiation from undifferentiated precursors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.