The ability to ward off filamentous pathogens, such as powdery mildew fungi, is one of the best studied examples of membrane trafficking-dependent disease resistance in plants. Here, papilla formation at the site of attack is essential for the pre-invasive immunity, whereas the encasement can hamper disease post-invasively. Exosomes containing antifungal peptides and small RNAs are thought to play a vital role in forming papillae and encasements that block fungal growth. While exosomes are well described in mammals, and have been shown to play important roles in cell-cell communication regulating development and disease, their function is not well-known in plants. In this review, we focus on some of the recent discoveries on plant exosomes and try to link this information with our current understanding of how plants use this form of unconventional secretion to acquire this durable and effective form of resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.