Earlier studies have shown that the single nucleotide polymorphism (SNP) A118G (rs1799971) in the opioid receptor mu 1 (OPRM1) gene may affect pain sensitivity. In the present study we investigated whether the A118G SNP could predict clinical outcome regarding progression of pain intensity and disability in patients with low back pain and sciatica after lumbar disc herniation. Patients (n ϭ 258) with lumbar disc herniation and sciatic pain, all European-Caucasian, were recruited from two hospitals in Norway. Pain and disability were rated on a visual analog scale (VAS), by McGill Sensory Questionnaire and by Oswestry Disability Index (ODI) over a 12 months period. The data revealed a significant interaction between sex and A118G genotype regarding the pain intensity during the 12 months (VAS, p ϭ 0.002; McGill, p ϭ 0.021; ODI, p ϭ 0.205, repeated-measures ANOVA). We found that */G women had a slower recovery rate than the */G men. Actually, the */G women had 2.3 times as much pain as the */G men 12 months after the disc herniation (VAS, p ϭ 0.043, one-way ANOVA; p ϭ 0.035, Tukey HSD). In contrast, the A/A women and A/A men seemed to have almost exactly the same recovery rate. The present data suggest that OPRM1 G allele increases the pain intensity in women, but has a protective effect in men the first year after disc herniation.
Objective:To apply genetic analysis of genome-wide association data to study the extent and nature of a shared biological basis between migraine and coronary artery disease (CAD).Methods:Four separate methods for cross-phenotype genetic analysis were applied on data from 2 large-scale genome-wide association studies of migraine (19,981 cases, 56,667 controls) and CAD (21,076 cases, 63,014 controls). The first 2 methods quantified the extent of overlapping risk variants and assessed the load of CAD risk loci in migraineurs. Genomic regions of shared risk were then identified by analysis of covariance patterns between the 2 phenotypes and by querying known genome-wide significant loci.Results:We found a significant overlap of genetic risk loci for migraine and CAD. When stratified by migraine subtype, this was limited to migraine without aura, and the overlap was protective in that patients with migraine had a lower load of CAD risk alleles than controls. Genes indicated by 16 shared risk loci point to mechanisms with potential roles in migraine pathogenesis and CAD, including endothelial dysfunction (PHACTR1) and insulin homeostasis (GIP).Conclusions:The results suggest that shared biological processes contribute to risk of migraine and CAD, but surprisingly this commonality is restricted to migraine without aura and the impact is in opposite directions. Understanding the mechanisms underlying these processes and their opposite relationship to migraine and CAD may improve our understanding of both disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.