BackgroundPulmonary rehabilitation (PR), delivered as a supervised multidisciplinary program including exercise training, is one of the cornerstones in the chronic obstructive pulmonary disease (COPD) management. We performed a systematic review and meta-analysis to assess the effect on mortality of a supervised early PR program, initiated during or within 4 weeks after hospitalization with an acute exacerbation of COPD compared with usual post-exacerbation care or no PR program. Secondary outcomes were days in hospital, COPD related readmissions, health-related quality of life (HRQoL), exercise capacity (walking distance), activities of daily living (ADL), fall risk and drop-out rate.MethodsWe identified randomized trials through a systematic search using MEDLINE, EMBASE and Cocharne Library and other sources through October 2017. Risk of bias was assessed regarding randomization, allocation sequence concealment, blinding, incomplete outcome data, selective outcome reporting, and other biases using the Cochrane Risk of Bias tool.ResultsWe included 13 randomized trials (801 participants). Our meta-analyses showed a clinically relevant reduction in mortality after early PR (4 trials, 319 patients; RR = 0.58 (95% CI: [0.35 to 0.98])) and at the longest follow-up (3 trials, 127 patients; RR = 0.55 (95% CI: [0.12 to 2.57])). Early PR reduced number of days in hospital by 4.27 days (1 trial, 180 patients; 95% CI: [− 6.85 to − 1.69]) and hospital readmissions (6 trials, 319 patients; RR = 0.47 (95% CI: [0.29 to 0.75])). Moreover, early PR improved HRQoL and walking distance, and did not affect drop-out rate. Several of the trials had unclear risk of bias in regard to the randomization and blinding, for some outcome there was also a lack of power.ConclusionModerate quality of evidence showed reductions in mortality, number of days in hospital and number of readmissions after early PR in patients hospitalized with a COPD exacerbation. Long-term effects on mortality were not statistically significant, but improvements in HRQoL and exercise capacity appeared to be maintained for at least 12 months. Therefore, we recommend early supervised PR to patients with COPD-related exacerbations. PR should be initiated during hospital admission or within 4 weeks after hospital discharge.Electronic supplementary materialThe online version of this article (10.1186/s12890-018-0718-1) contains supplementary material, which is available to authorized users.
In this study we have identified and characterized dopamine receptor D4 (DRD4) exon III tandem repeats in 33 public available nucleotide sequences from different mammalian species. We found that the tandem repeat in canids could be described in a novel and simple way, namely, as a structure composed of 15- and 12- bp modules. Tandem repeats composed of 18-bp modules were found in sequences from the horse, zebra, onager, and donkey, Asiatic bear, polar bear, common raccoon, dolphin, harbor porpoise, and domestic cat. Several of these sequences have been analyzed previously without a tandem repeat being found. In the domestic cow and gray seal we identified tandem repeats composed of 36-bp modules, each consisting of two closely related 18-bp basic units. A tandem repeat consisting of 9-bp modules was identified in sequences from mink and ferret. In the European otter we detected an 18-bp tandem repeat, while a tandem repeat consisting of 27-bp modules was identified in a sequence from European badger. Both these tandem repeats were composed of 9-bp basic units, which were closely related with the 9-bp repeat modules identified in the mink and ferret. Tandem repeats could not be identified in sequences from rodents. All tandem repeats possessed a high GC content with a strong bias for C. On phylogenetic analysis of the tandem repeats evolutionary related species were clustered into the same groups. The degree of conservation of the tandem repeats varied significantly between species. The deduced amino acid sequences of most of the tandem repeats exhibited a high propensity for disorder. This was also the case with an amino acid sequence of the human DRD4 exon III tandem repeat, which was included in the study for comparative purposes. We identified proline-containing motifs for SH3 and WW domain binding proteins, potential phosphorylation sites, PDZ domain binding motifs, and FHA domain binding motifs in the amino acid sequences of the tandem repeats. The numbers of potential functional sites varied pronouncedly between species. Our observations provide a platform for future studies of the architecture and evolution of the DRD4 exon III tandem repeat, and they suggest that differences in the structure of this tandem repeat contribute to specialization and generation of diversity in receptor function.
A large number of mammalian species harbor a tandem repeat in exon III of the gene encoding dopamine receptor D4 (DRD4), a receptor associated with cognitive functions. In this study, a DRD4 gene exon III tandem repeat from the order Cetacea was identified and characterized. Included in our study were samples from 10 white-beaked dolphins (Lagenorhynchus albirostris), 10 harbor porpoises (Phocoena phocoena), eight sperm whales (Physeter macrocephalus), and five minke whales (Balaenoptera acutorostrata). Using enzymatic amplification followed by sequencing of amplified fragments, a tandem repeat composed of 18-bp basic units was detected in all of these species. The tandem repeats in white-beaked dolphin and harbor porpoise were both monomorphic and consisted of 11 and 12 basic units, respectively. In contrast, the sperm whale harbored a polymorphic tandem repeat with size variants composed of three, four, and five basic units. Also the tandem repeat in minke whale was polymorphic; size variants composed of 6 or 11 basic units were found in this species. The consensus sequences of the basic units were identical in the closely related white-beaked dolphin and harbor porpoise, and these sequences differed by a maximum of two changes when compared to the remaining species. There was a high degree of similarity between the cetacean basic unit consensus sequences and those from members of the horse family and domestic cow, which also harbor a tandem repeat composed of 18-bp basic units in exon III of their DRD4 gene. Consequently, the 18-bp tandem repeat appears to have originated prior to the differentiation of hoofed mammals into odd-toed and even-toed ungulates. The composition of the tandem repeat in cetaceans differed markedly from that in primates, which is composed of 48-bp repeat basic units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.