Autotaxin is a circulating enzyme with a major role in the production of lysophosphatic acid (LPA) species in blood. A role for the autotaxin/LPA axis has been suggested in many disease areas including pulmonary fibrosis. Structural modifications of the known autotaxin inhibitor lead compound 1, to attenuate hERG inhibition, remove CYP3A4 time-dependent inhibition, and improve pharmacokinetic properties, led to the identification of clinical candidate GLPG1690 (11). Compound 11 was able to cause a sustained reduction of LPA levels in plasma in vivo and was shown to be efficacious in a bleomycin-induced pulmonary fibrosis model in mice and in reducing extracellular matrix deposition in the lung while also reducing LPA 18:2 content in bronchoalveolar lavage fluid. Compound 11 is currently being evaluated in an exploratory phase 2a study in idiopathic pulmonary fibrosis patients.
GPR84 is a medium chain free fatty
acid-binding G-protein-coupled
receptor associated with inflammatory and fibrotic diseases. As the
only reported antagonist of GPR84 (PBI-4050) that displays relatively
low potency and selectivity, a clear need exists for an improved modulator.
Structural optimization of GPR84 antagonist hit 1, identified
through high-throughput screening, led to the identification of potent
and selective GPR84 inhibitor GLPG1205 (36). Compared
with the initial hit, 36 showed improved potency in a
guanosine 5′-O-[γ-thio]triphosphate
assay, exhibited metabolic stability, and lacked activity against
phosphodiesterase-4. This novel pharmacological tool allowed investigation
of the therapeutic potential of GPR84 inhibition. At once-daily doses
of 3 and 10 mg/kg, GLPG1205 reduced disease activity index score and
neutrophil infiltration in a mouse dextran sodium sulfate-induced
chronic inflammatory bowel disease model, with efficacy similar to
positive-control compound sulfasalazine. The drug discovery steps
leading to GLPG1205 identification, currently under phase II clinical
investigation, are described herein.
FFA2, also called GPR43, is a G-protein coupled receptor for short chain fatty acids which is involved in the mediation of inflammatory responses. A class of azetidines was developed as potent FFA2 antagonists. Multiparametric optimization of early hits with moderate potency and suboptimal ADME properties led to the identification of several compounds with nanomolar potency on the receptor combined with excellent pharmacokinetic (PK) parameters. The most advanced compound, 4-[[(R)-1-(benzo[b]thiophene-3-carbonyl)-2-methyl-azetidine-2-carbonyl]-(3-chloro-benzyl)-amino]-butyric acid 99 (GLPG0974), is able to inhibit acetate-induced neutrophil migration strongly in vitro and demonstrated ability to inhibit a neutrophil-based pharmacodynamic (PD) marker, CD11b activation-specific epitope [AE], in a human whole blood assay. All together, these data supported the progression of 99 toward next phases, becoming the first FFA2 antagonist to reach the clinic.
In a previous experimental study using a chronic renal failure rat model, a dose-related multiphasic effect of strontium (Sr) on bone formation was found that could be reproduced in an in vitro set-up using primary rat osteoblasts. The results from the latter study allowed us to distinguish between a reduced nodule formation in the presence of an intact mineralization at low Sr-doses (1 microg/ml) and an interference of the element with the hydroxyapatite (HA) formation at high doses (20-100 microg/ml). To further investigate the latter effect of Sr on physicochemical bone mineral properties, an in vitro study was set up in which the UMR-106 rat osteosarcoma cell line was exposed to Sr, added to the cell culture medium in a concentration range varying between 0-100 microg/ml. Temporal growth and functionality of the culture was investigated by measurement of the alkaline phosphatase activity and calcium (Ca) concentration in the culture medium (used as an index of Ca-incorporation, i.e., HA formation) at various time points. At the end of the culture period (14 days post-confluence), samples of the mineralized cultures were taken for further analysis using X-ray diffraction (XRD) and Fourier Transform Infra-Red Spectroscopy (FTIR). Synthetic HA doped with various Sr concentrations (based on the cell culture and previous experimental studies and yielding Sr/(Sr + Ca) ratios ranging from 0-60%), was prepared and examined for crystal growth and solubility. Crystal size was assessed using scanning electron microscopy (SEM). Ca incorporation indicated a reduced mineralization in the 20 and 100 microg/ml Sr groups vs. controls. Sr-doped synthetic HA showed a significant dose-dependent reduction in crystal growth, as assessed by SEM, and an increase in solubility, apparent from 12.7% Sr/(Sr + Ca) on. Moreover, in both mineralized cultures and synthetic HA, XRD and FTIR analysis showed a reduced crystallinity and altered crystal lattice at similar concentrations. These new data support our previous in vivo and in vitro findings and point to a potential physicochemical interference of Sr with HA formation and crystal properties in vivo.
The comparable localization of lanthanum in different types of bone turnover, and the unchanged localization after washout and consequent disappearance of the mineralization defect, indicates no relationship between the localization of lanthanum in bone and the presence of a mineralization defect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.