Aqueous kava root preparations have been consumed in the South Pacific as an apparently safe ceremonial and cultural drink for centuries. However, several reports of hepatotoxicity have been linked to the consumption of kava extracts in Western countries, where mainly ethanolic or acetonic extracts are used. The mechanism of toxicity has not been established, although several theories have been put forward. The composition of the major constituents, the kava lactones, varies according to preparation method and species of kava plant, and thus, the toxicity of the individual lactones has been tested in order to establish whether a single lactone or a certain composition of lactones may be responsible for the increased prevalence of kava-induced hepatotoxicity in Western countries. However, no such conclusion has been made on the basis of current data. Inhibition or induction of the major metabolizing enzymes, which might result in drug interactions, has also gained attention, but ambiguous results have been reported. On the basis of the chemical structures of kava constituents, the formation of reactive metabolites has also been suggested as an explanation of toxicity. Furthermore, skin rash is a side effect in kava consumers, which may be indicative of the formation of reactive metabolites and covalent binding to skin proteins leading to immune-mediated responses. Reactive metabolites of kava lactones have been identified in vitro as glutathione (GSH) conjugates and in vivo as mercapturates excreted in urine. Addition of GSH to kava extracts has been shown to reduce cytotoxicity in vitro, which suggests the presence of inherently reactive constituents. Only a few studies have investigated the toxicity of the minor constituents present in kava extract, such as pipermethystine and the flavokavains, where some have been shown to display higher in vitro cytotoxicity than the lactones. To date, there remains no indisputable reason for the increased prevalence of kava-induced hepatotoxicity in Western countries.
The aim of the present study was to develop a blood-brain barrier (BBB) permeability model that is applicable in the drug discovery phase. The BBB ensures proper neural function, but it restricts many drugs from entering the brain, and this complicates the development of new drugs against central nervous system diseases. Many in vitro models have been developed to predict BBB permeability, but the permeability characteristics of the human BBB are notoriously complex and hard to predict. Consequently, one single suitable BBB permeability screening model, which is generally applicable in the early drug discovery phase, does not yet exist. A new refined ex vivo insect-based BBB screening model that uses an intact, viable whole brain under controlled in vitro-like exposure conditions is presented.This model uses intact brains from desert locusts, which are placed in a well containing the compound solubilized in an insect buffer. After a limited time, the brain is removed and the compound concentration in the brain is measured by conventional liquid chromatography-mass spectrometry. The data presented here include 25 known drugs, and the data show that the ex vivo insect model can be used to measure the brain uptake over the hemolymph-brain barrier of drugs and that the brain uptake shows linear correlation with in situ perfusion data obtained in vertebrates. Moreover, this study shows that the insect ex vivo model is able to identify P-glycoprotein (Pgp) substrates, and the model allows differentiation between low-permeability compounds and compounds that are Pgp substrates.
Desorption electrospray ionization (DESI) mass spectrometry (MS) imaging was used to image locusts dosed with the antihistamine drug terfenadine. The study was conducted in order to elucidate a relatively high elimination rate of terfenadine from the locust hemolymph. In this one of the few MS imaging studies on insects, a method for cryosectioning of whole locusts was developed, and the distributions of a number of endogenous compounds are reported, including betaine and a number of amino acids and phospholipids. Terfenadine was detected in the stomach region and the intestine walls, whereas three different metabolites-terfenadine acid (fexofenadine), terfenadine glucoside, and terfenadine phosphate-were detected in significantly smaller amounts and only in the unexcreted feces in the lower part of the intestine. The use of MS/MS imaging was necessary in order to detect the metabolites. With use of DESI-MS imaging, no colocalization of the drug and the metabolites was observed, suggesting a very rapid excretion of metabolites into the feces. Additional liquid chromatography-MS investigations were performed on hemolymph and feces and showed some abundance of terfenadine and the three metabolites, although at low levels, in both the hemolymph and the feces.
In earlier studies insects were proposed as suitable models for vertebrate blood–brain barrier (BBB) permeability prediction and useful in early drug discovery. Here we provide transcriptome and functional data demonstrating the presence of a P-glycoprotein (Pgp) efflux transporter in the brain barrier of the desert locust (Schistocerca gregaria). In an in vivo study on the locust, we found an increased uptake of the two well-known Pgp substrates, rhodamine 123 and loperamide after co-administration with the Pgp inhibitors cyclosporine A or verapamil. Furthermore, ex vivo studies on isolated locust brains demonstrated differences in permeation of high and low permeability compounds. The vertebrate Pgp inhibitor verapamil did not affect the uptake of passively diffusing compounds but significantly increased the brain uptake of Pgp substrates in the ex vivo model. In addition, studies at 2°C and 30°C showed differences in brain uptake between Pgp-effluxed and passively diffusing compounds. The transcriptome data show a high degree of sequence identity of the locust Pgp transporter protein sequences to the human Pgp sequence (37%), as well as the presence of conserved domains. As in vertebrates, the locust brain–barrier function is morphologically confined to one specific cell layer and by using a whole-brain ex vivo drug exposure technique our locust model may retain the major cues that maintain and modulate the physiological function of the brain barrier. We show that the locust model has the potential to act as a robust and convenient model for assessing BBB permeability in early drug discovery.
1. The metabolism of midazolam was investigated in vivo in locusts in order to evaluate the presence of an enzyme with functionality similar to human CYP3A4/5. 2. Hydroxylated metabolites of midazolam identical to human metabolites were detected in locusts and the apparent affinities (Km values) were in the same range as reported in humans (in locusts: 7-23 and 33-85 µM for the formation of the 1'-OH and 4-OH metabolites, respectively). 3. The formation of hydroxylated metabolites could successfully be inhibited by co-administration of ketoconazole, a known CYP3A4/5 inhibitor. 4. Besides phase I metabolites, a number of conjugated metabolites were detected using high-resolution mass spectrometry. The most abundant metabolites detected were structurally identified by (1)H NMR as two N-glucosides. NMR analysis strongly suggested that the glycosylation occurred at the two nitrogens (either one in each case) of the imidazole ring. 5. Distribution of midazolam and the glucose conjugates were successfully measured using desorption electrospray mass spectrometry imaging revealing time-dependent changes in distribution over time. 6. In conclusion, it appears that an enzyme with functionality similar to human CYP3A4/5 is present in locusts. However, it appears that conjugation with glucose is the main detoxification pathway of midazolam in locusts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.