As the Covid-19 pandemic swept through an immunologically naïve human population, academics and public health professionals scrambled to establish methods and platforms for genomic surveillance and data sharing. This offered a rare opportunity to study the ecology and evolution of SARS-CoV-2 over the course of the ongoing pandemic. Here we use population genetic and phylogenetic methodology to characterise the population dynamics of SARS-CoV-2, and reconstruct patterns of virus introductions and local transmission in Norway against this backdrop. The analyses demonstrated that the epidemic in Norway was largely import-driven and characterized by the repeated introduction, establishment and suppression of new transmission lineages. This pattern changed with the arrival of the B.1.1.7 lineage, which was able to establish a stable presence concomitant with the imposition of severe border restrictions.
Extensive genomic surveillance has given great insights into the evolution of the SARS-CoV-2 virus and emerging variants. During the summer months of 2021, Norway was dominated by the Pango lineage AY.63 which is a sub-lineage of the highly transmissible Delta variant. Strikingly, AY.63 did not spread in other countries to any significant extent. AY.63 carried a key mutation, A222V, in the spike protein, as well as the deletion of three residues in nsp1. Although these mutations are close to functionally important areas, we did not find any evidence that they induced higher fitness compared to other Delta lineages. This variant was introduced to Norway at a time when there were low levels of SARS-CoV-2 and contact-reducing measures were relaxed, which probably explains why the lineage rose so quickly. Furthermore, we found that the lack of imports of AY.63 from other countries probably led to the eventual demise of the lineage in Norway.
Background: During the COVID-19 pandemic, wastewater-based surveillance gained great international interest as an additional tool to monitor SARS-CoV-2. In autumn 2021, the Norwegian Institute of Public Health decided to pilot a national wastewater surveillance (WS) system for SARS-CoV-2 and its variants between June 2022 and March 2023. We evaluated the system to assess if it met its objectives and its attribute-based performance. Methods: We adapted the available guidelines for evaluation of surveillance systems. The evaluation was carried out as a descriptive analysis and consisted of the following three steps: (i) description of the WS system, (ii) identification of users and stakeholders, and (iii) analysis of the system attributes and performance including sensitivity, specificity, timeliness, usefulness, representativeness, simplicity, flexibility, stability, and communication. Cross-correlation analysis was performed to assess the system ability to provide early warning signal of new wave of infections. Results: The pilot WS system was a national surveillance system using existing wastewater infrastructures from the largest Norwegian municipalities. We found that the system was sensitive, timely, useful, representative, simple, flexible, acceptable, and stable to follow the general trend of infection. Preliminary results indicate that the system could provide an early signal of changes in variant distribution. However, challenges may arise with: (i) specificity due to temporary fluctuations of RNA levels in wastewater, (ii) representativeness when downscaling, and (iii) flexibility and acceptability when upscaling the system due to limited resources and/or capacity. Conclusions: Our results showed that the pilot WS system met most of its surveillance objectives. The system was able to provide an early warning signal of 1-2 weeks, and the system was useful to monitor infections at population level and complement routine surveillance when individual testing activity was low. However, temporary fluctuations of WS values need to be carefully interpreted. To improve quality and efficiency, we recommend to standardise and validate methods for assessing trends of new waves of infection and variants, evaluate the WS system using a longer operational period particularly for new variants, and conduct prevalence studies in the population to calibrate the system and improve data interpretation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.