Maintenance therapy (MT) with oral methotrexate (MTX) and 6-mercaptopurine (6-MP) is essential for the cure of acute lymphoblastic leukemia (ALL). MTX and 6-MP interfere with nucleotide synthesis and salvage pathways. The primary cytotoxic mechanism involves the incorporation of thioguanine nucleotides (TGNs) into DNA (as DNA-TG), which may be enhanced by the inhibition of de novo purine synthesis by other MTX/6-MP metabolites. Co-medication during MT is common. Although Pneumocystis jirovecii prophylaxis appears safe, the benefit of glucocorticosteroid/vincristine pulses in improving survival and of allopurinol to moderate 6-MP pharmacokinetics remains uncertain. Numerous genetic polymorphisms influence the pharmacology, efficacy, and toxicity (mainly myelosuppression and hepatotoxicity) of MTX and thiopurines. Thiopurine S-methyltransferase (encoded by TPMT) decreases TGNs but increases methylated 6-MP metabolites (MeMPs); similarly, nudix hydrolase 15 (encoded by NUDT15) also decreases TGNs available for DNA incorporation. Loss-of-function variants in both genes are currently used to guide MT, but do not fully explain the inter-patient variability in thiopurine toxicity. Because of the large inter-individual variations in MTX/6-MP bioavailability and metabolism, dose adjustments are traditionally guided by the degree of myelosuppression, but this does not accurately reflect treatment intensity. DNA-TG is a common downstream metabolite of MTX/6-MP combination chemotherapy, and a higher level of DNA-TG has been associated with a lower relapse hazard, leading to the development of the Thiopurine Enhanced ALL Maintenance (TEAM) strategy—the addition of low-dose (2.5–12.5 mg/m2/day) 6-thioguanine to the 6-MP/MTX backbone—that is currently being tested in a randomized ALLTogether1 trial (EudraCT: 2018-001795-38). Mutations in the thiopurine and MTX metabolism pathways, and in the mismatch repair genes have been identified in early ALL relapses, providing valuable insights to assist the development of strategies to detect imminent relapse, to facilitate relapse salvage therapy, and even to bring about changes in frontline ALL therapy to mitigate this relapse risk.
"The viscosity of the blood in narrow capillary tubes" by Robin Fåhraeus and Torsten Lindqvist (Am J Physiol 96: 562-568, 1931) can be a valuable opportunity for teaching basic hemorheological principles in undergraduate cardiovascular physiology. This classic paper demonstrates that a progressive decline in apparent viscosity occurs when blood flows through glass capillary tubes of diminishing radius, which was later designated as the "Fåhraeus-Lindqvist effect." Subsequent studies have shown that apparent viscosity continues to decline at diameters that correspond to the arteriolar segments of the systemic vascular tree, where the majority of the total peripheral resistance resides and is actively regulated in vivo. The Fåhraeus-Lindqvist effect thus reduces microvascular resistance, thereby maintaining local tissue perfusion at a relatively lower blood pressure. The paper by Fåhraeus and Lindqvist can be used as a platform for a plenary discussion of these concepts as well as of the relationships among hematocrit, vessel diameter, red blood cell deformability, and resistance to blood flow and how these factors may affect the work of the heart.
Background The recently established association between higher levels of DNA-incorporated thioguanine nucleotides and lower relapse risk in childhood acute lymphoblastic leukaemia (ALL) calls for reassessment of prolonged 6-thioguanine (6TG) treatment, while avoiding the risk of hepatotoxicity. Objectives To assess the incidence of hepatotoxicity in patients treated with 6TG, and to explore if a safe dose of continuous 6TG can be established. Data sources Databases, conference proceedings, and reference lists of included studies were systematically searched for 6TG and synonyms from 1998–2018. Methods We included studies of patients with ALL or inflammatory bowel disorder (IBD) treated with 6TG, excluding studies with 6TG as part of an intensive chemotherapy regimen. We uploaded a protocol to PROSPERO (registration number CRD42018089424). Database and manual searches yielded 1823 unique records. Of these, 395 full-texts were screened for eligibility. Finally, 134 reports representing 42 studies were included. Results and conclusions We included data from 42 studies of ALL and IBD patients; four randomised controlled trials (RCTs) including 3,993 patients, 20 observational studies including 796 patients, and 18 case reports including 60 patients. Hepatotoxicity in the form of sinusoidal obstruction syndrome (SOS) occurred in 9–25% of the ALL patients in two of the four included RCTs using 6TG doses of 40–60 mg/m 2 /day, and long-term hepatotoxicity in the form of nodular regenerative hyperplasia (NRH) was reported in 2.5%. In IBD patients treated with 6TG doses of approximately 23 mg/m 2 /day, NRH occurred in 14% of patients. At a 6TG dose of approximately 12 mg/m 2 /day, NRH was reported in 6% of IBD patients, which is similar to the background incidence. According to this review, doses at or below 12 mg/m 2 /day are rarely associated with notable hepatotoxicity and can probably be considered safe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.