This randomised, double-blind, placebo-controlled, cross-over study was designed to identify which pharmacodynamic parameters most accurately quantify the effects of delta-9-Tetrahydrocannabinol (THC), the predominantly psychoactive component of cannabis. In addition, we investigated the acceptability and usefulness of a novel mode of intrapulmonary THC administration using a Volcano vaporizer and pure THC instead of cannabis. Rising doses of THC (2, 4, 6 and 8 mg) or vehicle were administered with 90 minutes intervals to twelve healthy males using a Volcano vaporizer. Very low between-subject variability was observed in THC plasma concentrations, characterising the Volcano vaporizer as a suitable method for the administration of THC. Heart rate showed a sharp increase and rapid decline after each THC administration (8 mg: 19.4 bpm: 95% CI 13.2, 25.5). By contrast, dose dependent effects of body sway (8 mg: 108.5%: 95% CI 72.2%, 152.4%) and different subjective parameters did not return to baseline between doses (Visual Analogue Scales of 'alertness' (8 mg: -33.6 mm: 95% CI -41.6, -25.7), 'feeling high' (8 mg: 1.09 U: 95% CI 0.85, 1.33), 'external perception' (8 mg: 0.62 U: 95% CI 0.37, 0.86)). PK/PD-modeling of heart rate displayed a relatively short equilibration half-life of 7.68 min. CNS parameters showed equilibration half-lives ranging between 39.4 - 84.2 min. Some EEG-frequency bands, and pupil size showed small changes following the highest dose of THC. No changes were seen in saccadic eye movements, smooth pursuit and adaptive tracking performance. These results may be applicable in the development of novel cannabinoid agonists and antagonists, and in studies of the pharmacology and physiology of cannabinoid systems in humans.
The influence of cannabis on mental health receives growing scientific and political attention. An increasing demand for treatment of cannabis dependence has refueled the discussion about the addictive potential of cannabis. A key feature of all addictive drugs is the ability to increase synaptic dopamine levels in the striatum, a mechanism involved in their rewarding and motivating effects. However, it is currently unknown if cannabis can stimulate striatal dopamine neurotransmission in humans. Here we show that D9-tetrahydrocannabinol (THC), the main psychoactive component in cannabis, induces dopamine release in the human striatum. Using the dopamine D 2 /D 3 receptor tracer [ 11 C]raclopride and positron emission tomography in seven healthy subjects, we demonstrate that THC inhalation reduces [11 C]raclopride binding in the ventral striatum and the precommissural dorsal putamen but not in other striatal subregions. This is consistent with an increase in dopamine levels in these regions. These results suggest that THC shares a potentially addictive property with other drugs of abuse. Further, it implies that the endogenous cannabinoid system is involved in regulating striatal dopamine release. This allows new directions in research on the effects of THC in neuropsychiatric disorders, such as schizophrenia.
An increasing number of novel therapeutic agents are targeted at cannabinoid receptors. Drug development programmes of new cannabinoid drugs may be facilitated by the identification of useful biomarkers. This systemic literature review aims to assess the usefulness of direct biomarkers for the effects of cannabis and tetrahydrocannabinol (THC) in healthy volunteers. One hundred and sixty-five useful articles were found that investigated the acute effects of cannabis or THC on the central nervous system (CNS) and heart rate in healthy volunteers. Three hundred and eighteen tests (or test variants) were grouped in test clusters and functional domains, to allow their evaluation as a useful biomarker and to study their dose-response effects. Cannabis/THC affected a wide range of CNS domains. In addition to heart rate, subjective effects were the most reliable biomarkers, showing significant responses to cannabis in almost all studies. Some CNS domains showed indications of depression at lower and stimulation at higher doses. Subjective effects and heart rate are currently the most reliable biomarkers to study the effect of cannabis. Cannabis affects most CNS domains, but too many different CNS tests are used to quantify the drug-response relationships reliably. Test standardization, particularly in motor and memory domains, may reveal additional biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.