Incorporating oxophilic metals into noble metal-based catalysts represents an emerging strategy to improve the catalytic performance of electrocatalysts in fuel cells. However, effects of the distance between the noble metal and oxophilic metal active sites on the catalytic performance have rarely been investigated. Herein, we report on ultrasmall (∼5 nm) Pd–Ni–P ternary nanoparticles for ethanol electrooxidation. The activity is improved up to 4.95 A per mgPd, which is 6.88 times higher than commercial Pd/C (0.72 A per mgPd), by shortening the distance between Pd and Ni active sites, achieved through shape transformation from Pd/Ni–P heterodimers into Pd–Ni–P nanoparticles and tuning the Ni/Pd atomic ratio to 1:1. Density functional theory calculations reveal that the improved activity and stability stems from the promoted production of free OH radicals (on Ni active sites) which facilitate the oxidative removal of carbonaceous poison and combination with CH3CO radicals on adjacent Pd active sites.
One‐dimensional anodic titanium oxide (ATO) nanotube arrays hold great potential as electrode materials for both dye‐sensitized solar cells (DSSCs) and electrochemical supercapacitors (SCs). In this work, a novel stack‐integrated photo‐supercapacitor (PSC) thin‐film device is presented, composed of a DSSC and a SC built on bi‐polar ATO nanotube arrays, where an improved SC performance is achieved through selective plasma‐assisted hydrogenation treatment. At a high current density of 1 mA/cm2 in charge/discharge measurements, the areal capacitance of selective hydrogenated ATO two‐electrode sub‐device is substantially increased ∼5.1 times, with the value as high as 1.100 mF/cm2. The optimized PSC exhibits a remarkable overall photoelectric conversion and storage efficiency up to 1.64%, with fast response and superior cycling capability for more than 100 photocharge/galvanostatic discharge cycles without any decay. To meet applicable demands with a larger output voltage, a tandem PSC system is constructed, serving as the self‐driven power source for an LED.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.