Bioclimatic variables are indicators reflecting the integrated relationship between living things and climate. They are often used to interprete the relationships between species, vegetations and climate in global change research, and further simulate the geographical distribution patterns of both species and vegetations, as well as their functional characteristics. Regional bioclimate datasets, however, have been rarely reported. Based on an ANUSPIN interpolated dataset (covering temperature, precipitation and sunshine percentage) of 1km-resolution climate variables in China at 30-year basis averaged from 1951 to 1980 and from 1981 to 2010, respectively, we calculated 9 kinds bioclimatic variables in this study, namely mean temperature of the coldest month, mean temperature of the warmest month, absolute maximum temperature, absolute minimum temperature, annual growing degree days above 0°C and 5°C, growing season precipitation, annual drought index and annual moisture index. We plotted their spatial distribution map and analyzed their spatial pattern and trend statistically. Comparative analysis shows that the variation range of corresponding variables is very narrow, and the statistical variables are nearly the same. Therefore, the error of this dataset mainly comes from the spatial distribution dataset of basic climatic factors, and the secondary error in the process is tiny.This dataset provides reasonable environmentally mechanistic explanations for research on the relationships between species, vegetations and climate, and offers a convenient and diverse way for researchers to use bioclimatic variables to simulate species distribution patterns, vegetation structures and functions.
Climate diagram can be used to reflect visually observation data of temperature and precipitation as well as information of weather stations. It is an effective tool for studying the relationship between vegetation and climate. This paper aims to provide the atlas of climate diagrams of the Qingzang Plateau, based on the 30-year averaged observational records of national surface weather stations during 1951-1980 and 1981-2010, respectively, in order to understand the plateau climate feature of every vegetation region and to further explore the vegetationclimate relationships on the plateau. The atlas of climate diagrams of 205 weather stations on the Qingzang Plateau for both the two 30-year periods were produced according to the standard of climate diagrams in Vegetation of China. Results showed that the temperature and precipitation of the Qingzang Plateau were overall low in the whole year but relatively higher in summer, and differed obviously among different vegetation regions. The mean annual temperature and annual precipitation showed an increasing trend from the first 30-year period of 1951-1980 to the later one of 1981-2010. Although the number of weather stations in the western plateau is very sparse, this climate diagram dataset covers every vegetation regions of the plateau surface. This atlas can be used effectively to study the relationships between vegetation and climate, and conveniently to display the climate environment of the plateau.
Abstract. Functional trait databases are emerging as a crucial tool for a wide range of ecological studies, including next-generation vegetation modelling across the world. However, few large-scale studies have been reported on plant traits in the Tibetan Plateau (TP), the cradle of East Asian flora and fauna with specific alpine ecosystems, and no report on plant trait databases could be found. In this work, an extensive dataset of 11 leaf functional traits (TiP-Leaf), mainly for herbs and shrubs and a few trees on the TP, was compiled through field surveys. The TiP-Leaf dataset, which was compiled from 336 sites distributed mainly on the plateau surface and the northern margin of the TP across alpine and temperate vegetation regions and sampled from 2018 to 2021, contained 1692 morphological trait measurements of leaf thickness, leaf fresh weight, leaf dry weight, leaf dry-matter content, leaf water content, leaf area, specific leaf area and leaf mass per area and 1645 chemical element trait measurements of leaf carbon, nitrogen and phosphorus contents. Thus, 468 species that belong to 184 genera and 51 families were obtained and measured. In addition to leaf trait measurements, the geographic coordinates, bioclimate variables, disturbance intensities and vegetation types of each site were also recorded. The dataset could provide solid data support to effectively quantify the modern ecological features of alpine ecosystems, thereby further evaluating the response of alpine ecosystems to climate change and human disturbances and improving the next-generation vegetation model. The dataset, which is available from the National Tibetan Plateau Data Center (TPDC; Jin et al., 2022a; https://doi.org/10.11888/Terre.tpdc.272516), can make a great contribution to the regional and global plant trait databases.
Plot-based data are an important foundation for studying plant community characteristics and compiling vegetation monographs, vegetation map, and vegegraphy. It is the key data source of studies in vegetation ecology. To understand the species composition, community characteristics, and distribution pattern of special plateau vegetation on the Qingzang Plateau (QZP), this study uses the data of 338 sites including 758 plots in different regions of the QZP from 2018 to 2021 to analyze the species composition, floristic characteristics, and vegetation classification of plateau plant communities. A plot-based dataset of plant community on the QZP is then established. The 758 plots have 837 plant species belonging to 279 genera from 65 families in the alpine and temperate vegetation communities. The largest number of species are found in five families: Asteraceae (134 species), Poaceae (88 species), Fabaceae (75 species), Rosaceae (43 species), and Cyperaceae (40 species), as well as five genera: Artemisia (29 species), Pedicularis (27 species), Saussurea (25 species), Astragalus (23 species), and Poa (23 species). The floristic composition is mainly temperate (145 genera) and cosmopolitan (36 genera). The growth forms of the species are mainly herbs (83.51%) and shrubs (10.87%), and the life forms of herbs and woody plants are mainly perennial herbs (88.23%) and deciduous shrubs (83.67%), respectively. A total of 338 sites can be divided into four vegetation formation groups, 10 vegetation formations, 20 vegetation subformations, 78 alliance groups, and 117 alliances, in which 34 are steppe alliances, 33 are meadow alliances, 33 are desert
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.