Transcription factors (TFs) bind in a combinatorial fashion to specify the on-and-off states of genes; the ensemble of these binding events forms a regulatory network, constituting the wiring diagram for a cell. To examine the principles of the human transcriptional regulatory network, we determined the genomic binding information of 119 TFs in 458 ChIP-Seq experiments. We found the combinatorial, co-association of TFs to be highly context specific: distinct combinations of factors bind at specific genomic locations. In particular, there are significant differences in the binding proximal and distal to genes. We organized all the TF binding into a hierarchy and integrated it with other genomic information (e.g. miRNA regulation), forming a dense meta-network. Factors at different levels have different properties: for instance, top-level TFs more strongly influence expression and middle-level ones co-regulate targets to mitigate information-flow bottlenecks. Moreover, these co-regulations give rise to many enriched network motifs -- e.g. noise-buffering feed-forward loops. Finally, more connected network components are under stronger selection and exhibit a greater degree of allele-specific activity (i.e., differential binding to the two parental alleles). The regulatory information obtained in this study will be crucial for interpreting personal genome sequences and understanding basic principles of human biology and disease.
The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome.
Gene expression differs among both individuals and populations and is thought to be a major determinant of phenotypic variation. Although variation and genetic loci responsible for RNA expression levels have been analyzed extensively in human populations1–5, our knowledge is limited regarding the differences in human protein abundance and their genetic basis. Variation in mRNA expression is not a perfect surrogate for protein expression because the latter is influenced by a battery of post-transcriptional regulatory mechanisms, and, empirically, the correlation between protein and mRNA levels is generally modest6,7. Here we used isobaric tandem mass tag (TMT)-based quantitative mass spectrometry to determine relative protein levels of 5953 genes in lymphoblastoid cell lines (LCLs) from 95 diverse individuals genotyped in the HapMap Project8,9. We found that protein levels are heritable molecular phenotypes that exhibit considerable variation between individuals, populations, and sexes. Levels of specific sets of proteins involved in the same biological process co-vary among individuals, indicating that these processes are tightly regulated at the protein level. We identified cis-pQTLs (protein quantitative trait loci), including variants not detected by previous transcriptome studies. This study demonstrates the feasibility of high throughput human proteome quantification which, when integrated with DNA variation and transcriptome information, adds a new dimension to the characterization of gene expression regulation.
Spectral count, defined as the total number of spectra identified for a protein, has gained acceptance as a practical, label-free, semiquantitative measure of protein abundance in proteomic studies. In this review, we discuss issues affecting the performance of spectral counting relative to other label-free methods, as well as its limitations. Possible consequences of modifications, which are commonly applied to raw spectral counts to improve abundance estimations, are considered. The use of spectral counting for different types of quantitation studies is explored and critiqued. Different statistical methods and underlying frameworks that have been applied to spectral count analysis are described and compared, and problem areas that undermine confident statistical analysis are considered. Finally, the issue of accurate estimation of false-discovery rates is addressed and identified as a major current challenge in quantitative proteomics.
Protein phosphorylation events during T cell receptor (TCR) signaling control the formation of complexes among proteins proximal to the TCR, the activation of kinase cascades, and the activation of transcription factors; however, the mode and extent of the influence of phosphorylation in coordinating the diverse phenomena associated with T cell activation are unclear. Therefore, we used the human Jurkat T cell leukemia cell line as a model system and performed large-scale quantitative phosphoproteomic analyses of TCR signaling. We identified 10,665 unique phosphorylation sites, of which 696 showed TCR-responsive changes. In addition, we analyzed broad trends in phosphorylation data sets to uncover underlying mechanisms associated with T cell activation. We found that, upon stimulation of the TCR, phosphorylation events extensively targeted protein modules involved in all of the salient phenomena associated with T cell activation: patterning of surface proteins, endocytosis of the TCR, formation of the F-actin cup, inside-out activation of integrins, polarization of microtubules, production of cytokines, and alternative splicing of messenger RNA. Further, case-by-case analysis of TCR-responsive phosphorylation sites on proteins belonging to relevant functional modules together with network analysis allowed us to deduce that serine-threonine (S-T) phosphorylation modulated protein-protein interactions (PPIs) in a system-wide fashion. We also provide experimental support for this inference by showing that phosphorylation of tubulin on six distinct serine residues abrogated PPIs during the assembly of microtubules. We propose that modulation of PPIs by stimulus-dependent changes in S-T phosphorylation state is a widespread phenomenon applicable to many other signaling systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.