Non-metal doping introduces structural defects, which alter the metal oxide band gap, resulting in high photocatalytic performance. Herein, a F doped SnO2 was synthesized via a simple solvothermal method. Through adjusting the solvothermal time, surfactants and F doping ratio, the optimal sample was prepared. In addition, the as-prepared nano-powder was characterized and analyzed by X-Ray-Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Disperse Spectroscopy (EDS) and Fourier Transform Infrared Spectrum (FT-IR). Interestingly, the results of photocatalytic degradation showed that the degradation rate of rhodamine B (Rh B) reached 92.9% in 25 min after a 5-hour solvent heat treatment with polyethylene glycol (PEG) surfactant and F doping ratio of n(F):n(Sn) = 1:15. Through the study of photocatalytic performance, we found that F-doped SnO2 has high photocatalytic activity during a short time and its development potential in the field of photocatalysis, which provides a strong support for our further study of its practical application.
Fe-based amorphous alloy (FAA) is considered to be a new type of wastewater treatment catalyst. In this paper, the degradation performance of Fe-Nb-Cu-Si-B amorphous alloy powders to methyl orange (MO)...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.