With social progress and industrial development, heavy metal pollution in water and soils environment is becoming more serious. Although biochar is a low-cost and environmentally friendly adsorbent for heavy metal ions, its adsorption and immobilization efficiency still need to be improved. As an upgraded version of biochar, modified biochar has attracted extensive attention in the scientific community. This review summarized the recent research progress on the treatment methods on heavy metal pollutants in water and soils using biochar. The features and advantages of biochar modification techniques such as physical modification, chemical modification, biological modification and other categories of biochar were discussed. The mechanism of removing heavy metals from soil and water by modified biochar was summarized. It was found that biochar had better performance after modification, which provided higher surface areas and more functional groups, and had enough binding sites to combine heavy metal ions. Biochar is a very promising candidate for removing heavy metals in environment. Furthermore, some high valent metal ions could be reduced to low valent metals, such as Cr(VI) reduction to Cr(III), and form precipitates on biochar by in-situ sorption-reduction-precipitation strategy. However, it is still the direction of efforts to develop high-efficiency modified biochar with low-cost, high sorption capacity, high photocatalytic performance, environmentally friendly and no secondary pollution in future.
Nowadays, cities meet numerous sustainable development challenges in facing growing urban populations and expanding urban areas. The monitoring and simulation of land use and land-cover change have become essential tools for understanding and managing urbanization. This paper interprets and predicts the expansion of seven different land use types in the study area, using the PLUS model, which combines the Land use Expansion Analysis Strategy (LEAS) and the CA model, based on the multi-class random patch seed (CARS) model. By choosing a variety of driving factors, the PLUS model simulates urban expansion in the metropolitan area of Hangzhou. The accuracy of the simulation, manifested as the kappa coefficient of urban land, increased to more than 84%, and the kappa coefficient of other land use types was more than 90%. To a certain extent, the PLUS model used in this study solves the CA model’s deficiencies in conversion rule mining strategy and landscape dynamic change simulation strategy. The results show that various types of land use changes obtained using this method have a high degree of accuracy and can be used to simulate urban expansion, especially over short periods.
With the fast development of industry, large amounts of organic and inorganic pollutants are inevitably released to the natural environment, which results in the pollution of environment and thereby are...
Liquefied natural gas (LNG) leaks often lead to cascading accident disasters, including vapor cloud release, explosion, fire, and toxic gas release. The origin and evolution of each accidental disaster must be considered when assessing safety. This paper discusses the safety assessment project of an LNG gas storage station in Xuzhou, China. Multiple conceivable disasters due to the leakage of LNG storage tanks are simulated and analyzed using the computational fluid dynamic software FLACS. We studied different wind speeds interacting with the flammable vapor cloud area and creating frostbite in areas of low temperature. Diffusion simulations of vapor cloud explosion (VCE), thermal radiation, and the distribution of toxic substances were performed. The overpressure-impulse criterion was used to calculate the influence range of VCE. Heat flux, heat dose, and heat flux-heat dose criteria were used to calculate the safe distance for personnel in the event of fire. Based on the calculation results of the three latter criteria, this paper recommends using the heat flux criterion to evaluate fire accidents. The danger zone of each accident was compared. VCE accidents yielded the largest area.
The occurrence regularity and propagation mechanism of seismic activity are complicated and variable to be described by existing models. This paper presents a multifractal analysis of the Alpine–Himalayan seismic zone in time–space series. The multifractal spectrum of energy released from the seismic zone is obtained from different angles. Results show that earthquakes in the seismic zone possess complex multifractal characteristics in time–space series. Moreover, the clustering feature of the seismic activity intensity in the seismic zone is similar among the time–space series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.