The fungi present during pile-fermentation of Sichuan dark tea play a pivotal role in the development of its aroma and physical characteristics. Samples of tea leaves were collected on days 0 (YC-raw material), 8 (W1-first turn), 16 (W2-second turn), 24 (W3-third turn), and 32 (W4-out of pile) during pile-fermentation. High-throughput sequencing revealed seven phyla, 22 classes, 41 orders, 85 families, 128 genera, and 184 species of fungi. During fermentation, the fungal diversity index declined from the W1 to W3 stages and then increased exponentially at the W4 stage. A bar plot and heatmap revealed that Aspergillus, Thermomyces, Candida, Debaryomyces, Rasamsonia, Rhizomucor, and Thermoascus were abundant during piling, of which Aspergillus was the most abundant. Cluster analysis revealed that the W4 stage of fermentation is critical for fungal growth, diversity, and the community structure in Sichuan dark tea. This study revealed the role of fungi during pile-fermentation in the development of the essence and physical characteristics of Sichuan dark tea. This study comes under one of the Sustainable Development Goals of United Nations Organization (UNO) to “Establish Good Health and Well-Being.”
Bacteria and fungi present during pile-fermentation of Sichuan dark tea play a key role in the development of its aesthetic properties, such as color, taste, and fragrance. In our previous study, high-throughput sequencing of dark tea during fermentation revealed Aspergillus was abundant, but scarce knowledge is available about bacterial communities during pile-fermentation. In this study, we rigorously explored bacterial diversity in Sichuan dark tea at each specific stage of piling. Analysis of cluster data revealed 2,948 operational taxonomic units, which were divided into 42 phyla, 98 classes, 247 orders, 461 families, 1,052 genera, and 1,888 species. Certain members of the family Enterobacteriaceae were dominant at early stages of fermentation YC, W1, and W2; Pseudomonas at middle stage W3; and the highest bacterial diversity was observed at the final quality-determining stage W4. Noticeably, probiotics, such as Bacillus, Lactobacillus, Bifidobacterium, and Saccharopolyspora were also significantly higher at the quality-determining stage W4. Our findings might help in precise bacterial inoculation for probiotic food production by increasing the health benefits of Sichuan dark tea. This research also falls under the umbrella of the “Establish Good Health and Well-Being” Sustainable Development Goals of the United Nations Organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.