We present a deep imitation learning framework for robotic bimanual manipulation in a continuous state-action space. Imitation learning has been effectively utilized in mimicking bimanual manipulation movements, but generalizing the movement to objects in different locations has not been explored. We hypothesize that to precisely generalize the learned behavior relative to an object's location requires modeling relational information in the environment. To achieve this, we designed a method that (i) uses a multi-model framework to decomposes complex dynamics into elemental movement primitives, and (ii) parameterizes each primitive using a recurrent graph neural network to capture interactions. Our model is a deep, hierarchical, modular architecture with a high-level planner that learns to compose primitives sequentially and a low-level controller which integrates primitive dynamics modules and inverse kinematics control. We demonstrate the effectiveness using several simulated bimanual robotic manipulation tasks. Compared to models based on previous imitation learning studies, our model generalizes better and achieves higher success rates in the simulated tasks.
To achieve good result quality and short query response time, search engines use specific match plans on Inverted Index to help retrieve a small set of relevant documents from billions of web pages. A match plan is composed of a sequence of match rules, which contain discrete match rule types and continuous stopping quotas. Currently, match plans are manually designed by experts according to their several years' experience, which encounters difficulty in dealing with heterogeneous queries and varying data distribution. In this work, we formulate the match plan generation as a Partially Observable Markov Decision Process (POMDP) with a parameterized action space, and propose a novel reinforcement learning algorithm Parameterized Action Soft Actor-Critic (PASAC) to effectively enhance the exploration in both spaces. In our scene, we also discover a skew prioritizing issue of the original Prioritized Experience Replay (PER) and introduce Stratified Prioritized Experience Replay (SPER) to address it. We are the first group to generalize this task for all queries as a learning problem with zero prior knowledge and successfully apply deep reinforcement learning in the real web search environment. Our approach greatly outperforms the welldesigned production match plans by over 70% reduction of index block accesses with the quality of documents almost unchanged, and 9% reduction of query response time even with model inference cost. Our method also beats the baselines on some open-source benchmarks 1 . CCS CONCEPTS• Information systems → Search engine architectures and scalability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.