This laboratory has shown that arsenite (As+3) exposure can cause the malignant transformation of the UROtsa human urothelial cell line. This single isolate formed subcutaneous tumors with a histology similar to human urothelial cell carcinoma. The tumors also displayed areas of squamous differentiation of the urothelial cells, an infrequent, but known component of human bladder cancer. In the present study, five additional independent isolates of As+3 -transformed urothelial cells were isolated and each were shown to produce subcutaneous urothelial cell tumors with a characteristic histology very similar to those described in the initial report. That there were underlying phenotypic differences in the 6 independent isolates was demonstrated when they were assessed for their ability to form tumors within the peritoneal cavity. It was shown that two isolates could form hundreds of small peritoneal tumor nodules, one isolate a moderate number of tumor nodules, and three isolates no or only one tumor nodule. The peritoneal tumors were also characterized for their degree of squamous differentiation of the urothelial cells and, while areas of squamous differentiation could be found, such differentiation was substantially reduced compared to subcutaneous tumors. Immunostaining for keratin 6 was tested as a potential marker for malignant urothelial cells that had undergone squamous differentiation. Keratin 6 was shown to consistently stain only cells having some evidence of squamous differentiation. Keratin 16 was shown to follow the staining pattern of keratin 6. The isolates and tumor heterotransplants were all examined for keratin 6, 16 and 17 mRNA and protein expression.
Background/Aims: Treatments targeting cancer stem cells (CSCs) are most effective cancer therapy, whereas determination of CSCs is challenging. We have recently reported that Lgr5-positive cells are cancer stem cells (CSCs) in human skin squamous cell carcinoma (SCC). Ginsenoside Rh2 (GRh2) has been shown to significantly inhibit growth of some types of cancers, whereas its effects on the SCC have not been examined. Methods: Here, we transduced human SCC cells with lentivirus carrying GFP reporter under Lgr5 promoter. The transduced SCC cells were treated with different doses of GRh2, and then analyzed cell viability by CCK-8 assay and MTT assay. The effects of GRh2 on Lgr5-positive CSCs were determined by fow cytometry and by tumor sphere formation. Autophagy-associated protein and β-catenin were measured by Western blot. Expression of short hairpin small interfering RNA (shRNA) for Atg7 and β-catenin were used to inhibit autophagy and β-catenin signaling pathway, respectively, as loss-of-function experiments. Results: We found that GRh2 dose-dependently reduced SCC viability, possibly through reduced the number of Lgr5-positive CSCs. GRh2 increased autophagy and reduced β-catenin signaling in SCC cells. Inhibition of autophagy abolished the effects of GRh2 on β-catenin and cell viability, while increasing β-catenin abolished the effects of GRh2 on autophagy and cell viability. Conclusion: Taken together, our data suggest that GRh2 inhibited SCC growth, possibly through reduced the number of Lgr5-positive CSCs. This may be conducted through an interaction between autophagy and β-catenin signaling.
Whether under anaerobic or aerobic conditions, glycolysis results in production of lactate. Increasing evidence suggests that lactate serves as a multifunctional signaling molecule that develops non-metabolic activities in addition to serving as a key metabolite to link glycolysis and oxidative phosphorylation. Histone posttranslational modification patterns (HPTMs) are essential epigenetic processes controlling a variety of biological activities. Proteomics based on mass spectrometry (MS) has been used to progressively reveal new HPTMs. Recent discoveries of histone lactylation modification mediated by lactate and subsequent research demonstrating its involvement in cancer, inflammation, lung fibrosis, and other conditions suggest that it plays a significant role in immune regulation and homeostasis maintenance. This review provides a brief overview of the complicated control of histone lactylation modification in both pathological and physiological conditions.
This laboratory has generated a series of seven cadmium (Cd(+2))- and six arsenite (As(+3))-transformed urothelial cancer cell lines by exposure of parental UROtsa cells to each agent under similar conditions of exposure. In this study, the seven Cd(+2)-transformed cell lines were characterized for the expression of keratin 6, 16, and 17 while the six As(+3) cell lines were assessed for the expression of keratin 7 and 19. The results showed that the series of Cd(+2)-transformed cell lines and their respective transplants all had expression of keratin 6, 16, and 17 mRNA and protein. The expression of keratin 6, 16, and 17 was also correlated with areas of the urothelial tumor cells that had undergone squamous differentiation. The results also showed that four of the six As(+3)-transformed cell lines had expression of keratin 7 and 19 mRNA and protein and produced subcutaneous tumors with intense focal staining for keratin 7 and 19. The other two As(+3)-transformed cell lines had very low expression of keratin 7 mRNA and protein and produced subcutaneous tumors having no immunoreactivity for keratin 7; although keratin 19 expression was still present. The peritoneal tumors produced by one of these two cell lines regained expression of keratin 7 protein. The present results, coupled with previous studies, indicate that malignant transformation of UROtsa cells by Cd(+2) or As(+3) produce similar patterns of keratin 6, 7, 16, 17, and 19 in the resulting series of cell lines and their respective tumors.
Gastric cancer (GC) is a big threat to human life and health. Circular RNAs (circRNAs), a subclass of noncoding RNAs, were reported to play a critical role in GC progression. Here, we investigated the role of a novel circRNA named hsa_circ_0023409 in GC and its mechanism. Hsa_circ_0023409 expression in GC and adjacent tissues was examined by quantitative real-time polymerase chain reaction and in situ hybridization. The functions of hsa_circ_0023409 in GC cells were assessed both in vitro and in vivo. Immunofluorescence staining was performed for the localization of hsa_circ_0023409 and miR-542-3p in cells. The interaction between hsa_circ_0023409 and miR-542-3p, and miR-542-3p and insulin receptor substrate 4 (IRS4) was detected by dual-luciferase reporter assay. The effect of hsa_circ_0023409, miR-542-3p, and IRS4 on IRS4/phosphatidylinositol 3-kinase (PI3K)/AKT pathway was detected by western blot. The results showed that hsa_circ_0023409 was mainly located in cytoplasm and highly expressed in GC tissues and cells. Moreover, hsa_circ_0023409 showed positive correlation with tumor size, histological grade, and tumor–node–metastasis staging of GC patients. Functional studies showed that hsa_circ_0023409 promoted cell viability, proliferation, migration, and invasion and suppressed apoptosis in GC. Mechanism studies demonstrated that hsa_circ_0023409 upregulated IRS4 via sponging miR-542-3p in GC cells. Furthermore, IRS4 overexpression activated the PI3K/AKT pathway and reversed the inhibitory effect of hsa_circ_0023409 knockdown on the PI3K/AKT pathway. Taken together, we prove that hsa_circ_0023409 activates IRS4/PI3K/AKT pathway by acting as a sponge for miR-542-3p, thus promoting GC progression, indicating that hsa_circ_0023409 may serve as a potential target for treatment of GC and prognosis of GC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.