SLIT and NTRK-like protein-5 (SliTrk5) is one of the six members of SliTrk protein family, which is widely expressed in the central nervous system (CNS), regulating and participating in many essential steps of central nervous system development, including axon and dendritic growth, neuron differentiation, and synaptogenesis. SliTrk5, as a neuron transmembrane protein, contains two important conservative domains consisting of leucine repeats (LRRs) located at the amino terminal in the extracellular region and tyrosine residues (Tyr) located at the carboxyl terminal in the intracellular domains. These special structures make SliTrk5 play an important role in the pathological process of the CNS. A large number of studies have shown that SliTrk5 may be involved in the pathogenesis of CNS diseases, such as obsessive-compulsive-disorder (OCD), attention deficit/hyperactivity disorder (ADHD), glioma, autism spectrum disorders (ASDs), and Parkinson’s disease (PD). Targeting SliTrk5 is expected to become a new target for the treatment of CNS diseases, promoting the functional recovery of CNS. The purpose of this article is to review the current research progression of the role of SliTrk5 in CNS and its potential mechanisms in CNS diseases.
One of the most prevalent types of epilepsy is temporal lobe epilepsy (TLE), which has unknown etiological factors and drug resistance. The detailed mechanisms underlying potassium channels in human TLE have not yet been elucidated. Hence, this study aimed to mine potassium channel genes linked to TLE using a bioinformatic approach. The results found that Four key TLE-related potassium channel genes (TERKPCGs) were identified: potassium voltage-gated channel subfamily E member (KCNA) 1, KCNA2, potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11), and KCNS1. A protein–protein interaction (PPI) network was constructed to analyze the relationship between TERKPCGs and other key module genes. The results of gene set enrichment analysis (GSEA) for a single gene indicated that the four TERKPCGs were highly linked to the cation channel, potassium channel, respiratory chain, and oxidative phosphorylation. The mRNA-TF network was established using four mRNAs and 113 predicted transcription factors. A ceRNA network containing seven miRNAs, two mRNAs, and 244 lncRNAs was constructed based on the TERKPCGs. Three common small-molecule drugs (enflurane, promethazine, and miconazole) target KCNA1, KCNA2, and KCNS1. Ten small-molecule drugs (glimepiride, diazoxide, levosimendan, and thiamylal et al.) were retrieved for KCNJ11. Compared to normal mice, the expression of KCNA1, KCNA2, KCNJ11, and KCNS1 was downregulated in the brain tissue of the epilepsy mouse model at both the transcriptional and translational levels, which was consistent with the trend of human data from the public database. The results indicated that key potassium channel genes linked to TLE were identified based on bioinformatics analysis to investigate the potential significance of potassium channel genes in the development and treatment of TLE.
Epilepsy, characterized by recurrent seizures and abnormal brain discharges, is the third most common chronic disorder of the Central Nervous System (CNS). Although significant progress has been made in the research on antiepileptic drugs (AEDs), approximately one-third of patients with epilepsy are refractory to these drugs. Thus, research on the pathogenesis of epilepsy is ongoing to find more effective treatments. Many pathological mechanisms are involved in epilepsy, including neuronal apoptosis, mossy fiber sprouting, neuroinflammation, and dysfunction of neuronal ion channels, leading to abnormal neuronal excitatory networks in the brain. CK2 (Casein kinase 2), which plays a critical role in modulating neuronal excitability and synaptic transmission, has been shown to be associated with epilepsy. However, there is limited research on the mechanisms involved. Recent studies have suggested that CK2 is involved in regulating the function of neuronal ion channels by directly phosphorylating them or their binding partners. Therefore, in this review, we will summarize recent research advances regarding the potential role of CK2 regulating ion channels in epilepsy, aiming to provide more evidence for future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.