Complex gene-environment interactions are considered important in the development of obesity. The composition of the gut microbiota can determine the efficacy of energy harvest from food and changes in dietary composition have been associated with changes in the composition of gut microbial populations. The capacity to explore microbiota composition was markedly improved by the development of metagenomic approaches, which have already allowed production of the first human gut microbial gene catalogue and stratifying individuals by their gut genomic profile into different enterotypes, but the analyses were carried out mainly in non-intervention settings. To investigate the temporal relationships between food intake, gut microbiota and metabolic and inflammatory phenotypes, we conducted diet-induced weight-loss and weight-stabilization interventions in a study sample of 38 obese and 11 overweight individuals. Here we report that individuals with reduced microbial gene richness (40%) present more pronounced dys-metabolism and low-grade inflammation, as observed concomitantly in the accompanying paper. Dietary intervention improves low gene richness and clinical phenotypes, but seems to be less efficient for inflammation variables in individuals with lower gene richness. Low gene richness may therefore have predictive potential for the efficacy of intervention.
BackgroundAssociations between dietary patterns, metabolic and inflammatory markers and gut microbiota are yet to be elucidated.ObjectivesWe aimed to characterize dietary patterns in overweight and obese subjects and evaluate the different dietary patterns in relation to metabolic and inflammatory variables as well as gut microbiota.DesignDietary patterns, plasma and adipose tissue markers, and gut microbiota were evaluated in a group of 45 overweight and obese subjects (6 men and 39 women). A group of 14 lean subjects were also evaluated as a reference group.ResultsThree clusters of dietary patterns were identified in overweight/obese subjects. Cluster 1 had the least healthy eating behavior (highest consumption of potatoes, confectionary and sugary drinks, and the lowest consumption of fruits that was associated also with low consumption of yogurt, and water). This dietary pattern was associated with the highest LDL cholesterol, plasma soluble CD14 (p = 0.01) a marker of systemic inflammation but the lowest accumulation of CD163+ macrophages with anti-inflammatory profile in adipose tissue (p = 0.05). Cluster 3 had the healthiest eating behavior (lower consumption of confectionary and sugary drinks, and highest consumption of fruits but also yogurts and soups). Subjects in this Cluster had the lowest inflammatory markers (sCD14) and the highest anti-inflammatory adipose tissue CD163+ macrophages. Dietary intakes, insulin sensitivity and some inflammatory markers (plasma IL6) in Cluster 3 were close to those of lean subjects. Cluster 2 was in-between clusters 1 and 3 in terms of healthfulness. The 7 gut microbiota groups measured by qPCR were similar across the clusters. However, the healthiest dietary cluster had the highest microbial gene richness, as evaluated by quantitative metagenomics.ConclusionA healthier dietary pattern was associated with lower inflammatory markers as well as greater gut microbiota richness in overweight and obese subjects.Trial RegistrationClinicalTrials.gov NCT01314690
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.