Bats are natural reservoirs for many pathogenic viruses, and increasing evidence supports the notion that bats can also harbor group A rotaviruses (RVAs), important causative agents of diarrhea in children and young animals. Currently, 8 RVA strains possessing completely novel genotype constellations or genotypes possibly originating from other mammals have been identified from African and Chinese bats. However, all the data were mainly based on detection of RVA RNA, present only during acute infections, which does not permit assessment of the true exposure of a bat population to RVA. To systematically investigate the genetic diversity of RVAs, 547 bat anal swabs or gut samples along with 448 bat sera were collected from five South Chinese provinces. Specific reverse transcription-PCR (RT-PCR) screening found four RVA strains. Strain GLRL1 possessed a completely novel genotype constellation, whereas the other three possessed a constellation consistent with the MSLH14-like genotype, a newly characterized group of viruses widely prevalent in Chinese insectivorous bats. Among the latter, strain LZHP2 provided strong evidence of crossspecies transmission of RVAs from bats to humans, whereas strains YSSK5 and BSTM70 were likely reassortants between typical MSLH14-like RVAs and human RVAs. RVA-specific antibodies were detected in 10.7% (48/448) of bat sera by an indirect immunofluorescence assay (IIFA). Bats in Guangxi and Yunnan had a higher RVA-specific antibody prevalence than those from Fujian and Zhejiang provinces. These observations provide evidence for cross-species transmission of MSLH14-like bat RVAs to humans, highlighting the impact of bats as reservoirs of RVAs on public health.IMPORTANCE Bat viruses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), Ebola, Hendra, and Nipah viruses, are important pathogens causing outbreaks of severe emerging infectious diseases. However, little is known about bat viruses capable of causing gastroenteritis in humans, even though 8 group A viruses (RVAs) have been identified from bats so far. In this study, another 4 RVA strains were identified, with one providing strong evidence for zoonotic transmission from bats to humans. Serological investigation has also indicated that RVA infection in bats is far more prevalent than expected based on the detection of viral RNA.
Pigs are deeply involved in human lives; hence, their viruses are associated with public health. Here, we established the most comprehensive virome of healthy piglets to date, which provides a viromic baseline of weaned pigs for disease prevention and control, highlighting that longitudinal viromic monitoring is needed to better understand the dynamics of the virome in pig development and disease occurrence.
A B S T R A C TTicks are medically-important arthropods that maintain and transmit numerous emerging viruses. China suffers severely from tick-borne viral diseases such as tick-borne encephalitis and severe fever with thrombocytopenia syndrome (SFTS), but the background of tick-borne viruses is very limited. Here we report the virome profiling of ticks and goat sera from SFTS-epidemic areas, and serological investigation of SFTS virus (SFTSV) and Nairobi sheep disease virus (NSDV). Results revealed divergent viruses in ticks and goat sera, including SFTSV and NSDV. Sequence and phylogenetic analyses showed that the SFTSV identified here was most closely related to human SFTSV in sampling and surrounding areas, and the NSDV to the previously identified NSDV from northeast China. Serological investigation of SFTSV infection in goats revealed intensive activity in those areas. Surprisingly, two different methods of NSDV serological investigation showed no sera positive for this virus.
Bats are newly identified reservoirs of hantaviruses (HVs) among which very divergent HVs have been discovered in recent years. However, their significance for public health remains unclear since their seroprevalence as well as antigenic relationship with human-infecting HVs have not been investigated. In the present study archived tissues of 1,419 bats of 22 species from 6 families collected in 5 south and southwest provinces in China were screened by pan-HV RT-PCR following viral metagenomic analysis. As a result nine HVs have been identified in two bat species in two provinces and phylogenetically classified into two species, Laibin virus (LAIV, ICTV approved species, 1 strain) and Xuan son virus (XSV, proposed species, 8 strains). Additionally, 709 serum samples of these bats were also analyzed by ELISA to investigate the seroprevalence and cross-reactivity between different HVs using expressed recombinant nucleocapsid proteins (rNPs) of LAIV, XSV and Seoul virus (SEOV). The cross-reactivity of some bat sera were further confirmed by western blot (WB) using three rNPs followed by fluorescent antibody virus neutralization test (FAVNT) against live SEOV. Results showed that the total HV seropositive rate of bat sera was 18.5% (131/709) with many cross reacting with two or all three rNPs and several able to neutralize SEOV. WB analysis using the three rNPs and their specific hyperimmune sera demonstrated cross-reactivity between XSV/SEOV and LAIV/XSV, but not LAIV/SEOV, indicating that XSV is antigenically closer to human-infecting HVs. In addition a study of the distribution of the viruses identified an area covering the region between Chinese Guangxi and North Vietnam, in which XSV and LAIV circulate within different bat colonies with a high seroprevalence. A circulation sphere of bat-borne HVs has therefore been proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.