ObjectiveHyponatremia is the most common electrolyte disorder encountered in patients with neurological conditions, such as stroke. Studies have shown that it is associated with worse clinical outcomes and increased mortality in acute ischemic stroke (AIS). However, the role of hyponatremia has not been elucidated in patients with AIS who received intravenous thrombolysis (IVT) therapy. Therefore, this study aimed to investigate the effect of serum sodium levels on the clinical outcome and hemorrhagic transformation (HT) in patients with AIS who received thrombolytic therapy.MethodsPatients diagnosed with AIS who received IVT therapy between May 2015 and December 2020 were included in this study. All patients were screened for serum sodium levels immediately after hospital admission, before IVT therapy. The occurrence of HT was evaluated using computed tomography (CT) 24 ± 2 h after thrombolysis. Then, 3-month clinical outcomes were obtained by telephone calls or outpatient visits, and poor 3-month clinical outcomes were defined as modified Rankin Scale scores ≥3. The effects of serum sodium levels on the clinical outcome and HT were assessed using the multivariate logistic regression analysis.ResultsOf the 963 included patients, 82 (8.5%) had hyponatremia, 157 (16.3%) developed HT, and 333 (34.6%) had poor 3-month outcomes. Of the 82 patients with hyponatremia, 21 (25.6%) developed HT, and 39 (47.6%) had poor 3-month outcomes. Patients with hyponatremia had a higher incidence of post-thrombolysis HT (25.6 vs. 15.4%, p = 0.017) and worse clinical outcome (47.6 vs. 33.4%, p = 0.01) than those with normal serum sodium levels. Patients had significantly lower serum sodium levels in those with HT [138.4 (136.4–140.3, IQR) vs. 139.0 (137.2–140.7, IQR) mmol/L, p = 0.019] and poor 3 month outcome [139.0 (137.2–140.7) vs. 138.4 (136.7–140.3) mmol/L, p = 0.005] than those without. After adjusting for major covariates, the multivariate logistic regression analysis revealed that lower serum sodium levels were independently associated with an increased risk of HT [odds ratio (OR) = 1.804; 95% CI: 1.048–3.105] and poor 3-month outcome (OR = 1.647; 95% CI: 1.012–2.679).ConclusionLower serum sodium level was an independent risk factor for post-thrombolysis HT and poor clinical outcome in patients with AIS who received thrombolytic therapy.
Changes in the deep medullary vein (DMV) are reported to be associated with cerebral small vessel disease (CSVD). While the mechanisms of this association are unclear, dynamic cerebral autoregulation (dCA) has been speculated to participate in this association. Thus, we aimed to verify the association between DMV changes and total CSVD burden and further investigate the effect of dCA function on this correlation. In this prospective study, 95 Asian patients aged ≥18 years were included in the final assessment. DMV scores and total CSVD burden were determined using magnetic resonance imaging sequences. Transfer function analysis was performed to analyze dCA function. Generalized linear regressions were used to assess the relationship between DMV changes and total CSVD burden as well as between DMV changes and dCA function. An interaction model was utilized to assess the effect of dCA function on the association between DMV changes and total CSVD burden. Generalized linear models showed a significant positive association between DMV changes and total CSVD burden (p = 0.039) and a significant negative association between DMV changes and dCA function (p = 0.018). The interaction model demonstrated a significant positive interaction of dCA impairment on the association between DMV changes and the total CSVD burden (p = 0.02). Thus, we came to the conclusion that changes in DMV were correlated independently with both CSVD and dCA impairment and furthermore, impaired dCA function play an interaction effect on the association between DMV changes and the total CSVD burden. Our results can help improve the understanding of the complex pathogenesis and progression of CSVD, thereby facilitating early intervention and treatment development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.