A class of 2D covalent organic polymers (COPs) incorporating a metal (such as Fe, Co, Mn) with precisely controlled locations of nitrogen heteroatoms and holes were synthesized from various N-containing metal-organic complexes (for example, metal-porphyrin complexes) by a nickel-catalyzed Yamamoto reaction. Subsequent carbonization of the metal-incorporated COPs led to the formation of COP-derived graphene analogues, which acted as efficient electrocatalysts for oxygen reduction in both alkaline and acid media with a good stability and free from any methanol-crossover/CO-poisoning effects.
Using covalent organic polymer pre-cursors, we have developed a new strategy for location control of N-dopant heteroatoms in the graphitic porous carbon, which otherwise is impossible to achieve with conventional N-doping techniques. The electrocatalytic activities of the N-doped holey graphene analogues are well correlated to the N-locations, showing possibility for tailoring the structure and property of N-doped carbon nanomaterials.
A membrane with both high ion conductivity and selectivity is critical to high power density and low-cost flow batteries, which are of great importance for the wide application of renewable energies. The trade-off between ion selectivity and conductivity is a bottleneck of ion conductive membranes. In this paper, a thin-film composite membrane with ultrathin polyamide selective layer is found to break the trade-off between ion selectivity and conductivity, and dramatically improve the power density of a flow battery. As a result, a vanadium flow battery with a thin-film composite membrane achieves energy efficiency higher than 80% at a current density of 260 mA cm −2 , which is the highest ever reported to the best of our knowledge. Combining experiments and theoretical calculation, we propose that the high performance is attributed to the proton transfer via Grotthuss mechanism and Vehicle mechanism in sub-1 nm pores of the ultrathin polyamide selective layer.
Because of crystal symmetry, body centred cubic (BCC) metals have large differences in lattice friction between screw and edge dislocations, and manifest generally different mechanical behaviours from face centred cubic (FCC) metals. Although mechanical annealing (significant drop in stored dislocation density in response to applied stress) has been observed in FCC metals, it has not been observed in BCC metals so far. Here we show that significant mechanical annealing does occur in BCC mo pillars, when their diameters decrease to hundreds of nanometers. In addition, there exists a critical diameter for focused ion beam milled pillars, below which the strengthening exponent increases dramatically, from ~0.3 to ~1. Thus, a new regime of size effects in BCC metals is discovered that converges to that of FCC metals, revealing deep connection in the dislocation dynamics of the two systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.